
Richard M. Martin 

ON RELATIONAL DOMAINS, THE ALGEBRA OF RELATIONS, 

AND RELATIONAL-TERM LOGIC 

"Mathematics is tricks." 
Henry Pollock 

"No, mathematics is thought." 
Abner Shimony 

Well, perphaps the appropriate addendum to the foregoing dialogue 

is to remark that mathematics is thought about tricks and the 

reasons for them - about the thousands upon thousands of minutiae 

that make up mathematical language when stripped to its ultimate 

notions, in the manner, say, of Principia Mathematica and allied 

systems. Of particular importance here are the technicalia of quan

tification theory, as formidable a bag of tricks as has e'er been 

thought up. That this is the case becomes especially evident when 

that theory is looked at in the light of other theories that 

purport to take its place in some fashion or other - such as 

relational algebra, combinatory logic, or predicate-functor logic. 

In a previous paper
1 

a preliminary sketch of a pure algebra of 

n-adic relations - call it 'RA' -was put forward, 'pure' in the 

sense t hat no set-theory was made use of in any way at either the 

objec t or metalinguistJc level. This kind of formulation is in 

ma rked cantrast with previous formulations. A purported inter

pretation of the theory was given in the theory of virtual classes 

and relations as based on the ordinary first-order theory of 

quantification.
2 

No axiomatization of RA was given, however, and 

only a feeble attempt was made to show how quantification theory 

itself is contained within it in a kind of notational disgulse. 

Let us attempt no~, in the present paper, to formulate a simpler 

kind of theory as a surrogate for it. 

Let us recall, first, some basic features of ,RA itself and of the 

theory of virtual relations on which it is based. A supply of 

primitive non-logical relational constants, each of specified 

finite degree, is presupposed. The algebra RA is thus an applied 
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one in this sense (but pure of coursein presupposing no set-thevry). 

Boolean operationsof forming sums, products, and negationsof ~-adic 

relations are also presupposed, as well as the universal and null 

relations of each degree, ~· where n~ 1. Where n = 1, we speak of 

a monadic relation, as. is more or less customary. In addition, an 

o peration fo r the Cartesian product o f two relations is needed, as 

well as a notation for all the domainsof a relation. The notion of 

domain here is the generalized one appropriate for ~-adic relations. 

These latter two notio ns seem not to have been studied very much fo r 

their own sakeandin a generalized form, but are of the highest 

interest philo sophically. 

These various notions may be characterized in terms of virtual 

relation.s as fo llows. Let 

S ~ •• ·~ 3 --x -- ••• --x --} 
t 1 ~ -1 -~ 

be the virtual relation among x , 
-1 

••• , x where '--x -- ••• --x 
-n 1 n 

some formula of quantification theory constructed in terms of the 

non-logical relational primitives, holds. We can then let 

I(B_ V S )I abpreviate 
-n -n n 

I(.!!_ n S ) I 
-n n n 

abbreviate r r ~ ... ~ 3 < B. ~ ••• ~ • ~ ~ •.• ~ >J l , 
l 1 ~ -n 1 ~ -~ 1 ~ 

r -R I abbreviate r~~ ···~ 3 ,0-JB ~ ···~ Jl, 
l 1 ~ -~ 1 ~ 

'V' abbreviate 
n 

X 

1 
X X 

2 n 
X )] ' -n 2 

X 

and 

'A' abbreviate '-V , 
n 
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These abbreviations, within the theory of virtua1 c1asses and 

r e 1 a t i o n s , in t ro d u c e t h e r e s p e c t i v e Eb o 1 e a n n o t io n s • T h e Ca r t e s i an 

pro duct may be defined by 1etting 

, 
r(R X~ )(n+~) 

;;;;n -m -
abbreviate r\~ •• ·~ny__ ••• y__m3 ~ ~ •• ·~n. ~ y__ •• • y__ )],· 

t 1 - 1 - -~ 1 - -~ 1 !!! 

Note that the Ebolean operations are homeoadic in thes e ns e that th e 

resu1t of the operation is of the same degree ~ asthat of the 

operands, and that the two operands (of the sums and products) are 

of the same degree ~· The degree of the Cartesian product, however, 

is cumulative in the sense that the degree (~+~) of the resu1t of 

the operation is the (arithmetical) sum of the degrees ~ and!!! of 

the two o perands. The notion of the identity of individua1s used 

here may be taken either as a primitive (as in quantification theory 

with identity) or else defined, say, in the manner of Hi1bert and 

Bernays . 3 Let it be represented here by 'Id
2
', no matter how intro

duced. 

The explanations in the foregoing paragraph are of course mere1y 

heuristic, and p1ay no ro1e in RA itse1f. They mere1y he1p us to se e 

how its primitives are to be interpreted. And simi1ar1y now for the 

generalized notion of the do main of a re1ation. 

For a dyadic re1ation R
2

, the first domain is mere1y 

( 1) t.~ 3 (E~)R 2 2], 

and the second or converse domain is 

( 2) ly__ 3(E~)Rz 2] 

Fora triadic re1ation R
3

, we must provide not on1y for 

( 3) l ~ 3 ( Ey__) ( E~) R3 xyz} , 

(4) l~ ::;,(E~)(E~)R 3 x yz J, 
and 
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( 5) 

but also for 

( 6) 

(7) 

and 

( 8) 

The first . of these we may think of as the domain, the third as the 

converse domain, and the second as the middle domain. The other 

three are relational domains, but no obvious terminology for them 

is available. In the case of tetradie (or quadratic) relations , the 

Situation is still more complicated. To provide for all these, a nd 

in general for all the domains including the relational ones, let 

us let 

r( D R ) .' bb . i , ... , h =.r:!. l. a r e v 1 a t e r[x .•• x 3(Ex) 
-l -.b -~ 

where i, ... ' .b_, ~, ... ' ~ are any ~ distinct positive integ e rs 

each .2. 
~' .!., ... ' h are j ust l_ in number (,1_ ::= l), and .!., ... ' h 

and ~, ... ' ~ are tak e n in any order of magni tude, fo r n= 2. 

We note now how (l)-(8) may be represented or symbolized in terms of 

'D', (l) in fact is merely (D
1

R
2

)
1 

and (2) is (D
2

R
2

)
1

• (3) is (D
1

R
3

)
1

, 

(4) is (D
2

R
3

) 
1

, (5) is (D
3

R
3

) 
1

• (6), (7), and (8) are themselves 

dyadic relations represented by '(D1 , 2 R3 ) 2 ', '(D 1 , 3 R3 )z' and 

'(D 2 , 3R3) 2 ' respectively. And so on for r e lations of higher degree 

and their domains, relational and o ther. 

Let us note that expressions such as '(D 1 , 2 , 3 R3 ) 3 ' are also signifi

cant, so that a relation is allowed to be one of its own domains. 

But so is '(D 1 , 3 , 2 R3 )/ significant, and '(D 2 , 1 , 3 R3 )/, '(D2 , 3 , 1 R3 )/, 

' ( D 3 , 1 , 2 R 3 ) 3 ' , an d ' ( D 3 , 2 , 1 R 3 ) 3 ' • E a c h o f t h e s e r e p r es en t s on e o f t h e 

converses of the triadic relation R3 just as '(D 2 , 1 R2 ) 2 ' r e prese nts 

the converse of R2 • And similarly for relations of higher degree, so 

that the general theory of converses is included in the general theory 
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of domains. 

Note, by way of a few further examples, that 

(9) rl ~ 3 (}'_)~2 xy f' 
is represented here by 

r_( 0 - R ) , , 
1 :;::2 

(10) rt~ 3 (E}'_) (~) (~) (E~) (~)~6 xyzwuv r 
by 

r , 
(Ol-(Ol 2-(0l 2 3 4-(0l 2 3 4 5 -~ )5)4)2)1) 

' ' ' ' ' ' ' ' ' -6 
(11) rt xwyz 3 ~4 xyzw f 

by 
, 

r (01,4,2,3~4)4 ' 

(12 ) r t ~ 3 ( E~) ( E _!) ( ~) ( E ~) ~6 x vy u w z J 1 

by 

r(ol,2-(0l,2,3,4-(0l,2,3,4,5(0l,6,2,5,4,~6)6)5)4)2
1

• 

I n t he formulation of RA, all talk of virtual classes and relations 

i s , of course, dropped, the effect of 5uch being achieved by use of 

t he Boolean notions, Cartesian products, and domains. I.n an algebra 

t he r e is always a primitive '=' for identity, so that rR = S, is 
;;;;:;n ;;;;:n 

t he on l y kind of atomic formula admitted, but with 'c-V' and 'v', say, 

available as truth-functional primitives to provide for molecular 

formulae . The basic principles of RA -- and, ultimately, the axioms -

mus t p r ovide for the truth-functions, for identity as between ~-adle 

relations, for the Boolean notions, and for Cartesian products and 

dom a ins. A list of some of the principles needed was put forward in 

the previous paper. Not all of these are required as axioms, although 

some additional ones are. • 

In the original presentation of RA in Mind, Modality, Meaning, and 

Method, the sentence 
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(13) 

was said to be expressible by 

(14) 

But unfortunately this is not correct. This latter states, in 

virtual-relation terms, that 

or, equivalently, that 

But of course (15) is not equivalent to (13), although it logically 

implies it. The form for (13) should be rather 

'-(Dl-(Dl,2-(Dl,2,3-T4)3)2)l = J\1', 

as may easily be verified. And, similarly, the Axiom of Pairs of 

set-theory has the form 

and the given instances of the Aussonderungsschema the form 

Given a relation R for !._1_::::.... 2, the totality of its converses tagether 
n' -

with all its domains constitutes a family of closely affiliated 

relations. All of the affiliates are constructed from the given one 

and are recognized as relations along with it. In some sense, they 

are "given" along with the original one, merely awaiting a proper 

73 



notation, as it were. Once we have such a notation, RA is seen to 

be merely an extension of an essentially Boolean theory as augmented 

with Cartesian products. The admission of the relations affiliated 

with a given relation thus seems not only natural, but a small price 

to pay for the algebraic richness forthcoming as a result. Further, 

RA itself may now be seen to wholly Booleanized, so to speak, all 

erstwhile relational notions -- intrisically relational or non

Boolean ones -- being now assimilated in the theory of domains. 

It should be observed that '=' for identity as between ~-adic relat

ions in RA is a very strong primitive indeed, and the two axiom

schemata governing it are very strong principles. These are that 

~R = R 
~ ;;;;n 

and 

I-R S =:> --R 
;;;:::n ;;n ;;;:n 

--S 
;;n 

where . r--5--,differs from the term 
-n 

r __ R __ , only in containing occurrences of S in one or more places 
=n ~n 

where there are occurrences of R in r --R , 
;:;;:n ;;n 

I t is interesting to observe that the effect o f having iden ti ty may 

be achieved in a much more economical way. The result will no longer 

be an algebra, however, but a special kind of logic of . relations. 

We should observe also that the truth-functional connectives may 

be eliminated as primitives of RA without loss. Recall the principles 

that 

and 

rc:V ~ = Vn:: (Dl(Vl X-~) (n+l))l = Vl ' 
~ - ~ -

j-(R = V • S =V ) = (R (\ S ) = V 
;;;:~ ~ ;;:;!:!. ~ ~ -., n n 

1- ( ~ R 
=.!l 

vn V c" S 
::::0 

V)=: (o
1

<V
1

x -(ijns)) ) 
n ;;;n :;;;;;n n ( ~ + 1 ) 1 

or, better, 
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f-(~ V V s V ) - ( -(Dl (Vl X -R ) ) u -(Dl (Vl X 
-n ~ ~n 

~ 
;;;;n (~ +U 1 

-S ) ) ) vl 
~ (~+1) 1 1 

Whenever, in RA, we wi~h to use a truth-functional connecti ve , we 

may eliminate it in view of these equivalences. 

It should be observed also that the only atomic formulae we need 

consider are of the form ~'"T V' in view of the Ebolean principle 

that 

1-R 
:;;;n 

s 
-~ 

;;;n ~ 

((-R us > f\(R u-s > > V 
~n ;n n ~n ;n n n 

It is true that '=' occurs in this equivalence on the right-hand 

side. In place of rT 
=n 

V ., , let us now wri te merely 

~ 

to the effect that such and such and n-adic relation is universal 

in the sense appropriate to ~ -adic relations. No properties of 

identity as such need then be postulated, as we shall see in a 

moment. Actually, we can simplify RA in another respect also, by 

using primitively only Cartesian products of the form 

X V ) ), , where v1 is the universal monadic relation. 
1 (~ +1 

We shall see how the full effect of having Cartesian products, may 

be achieved in this way. 

Let us go on, now, to formulate the essentials of RA, but without 

using identity or the truth-functions. As primitives, let us take 

'-' for Boolean negation, 'U' for Boolean sums, ')<.' for the 

restricted Cartesian products, and 'D' with suitable subscripts for 

relational domains. Erstwhile individual constants are to be handled 

predicatively, so that 'Soc', for example, may represent the predicate 

'Socr.atizes'. At least one such primitive is presupposed, say 'Soc' 

itself. 

The following recursive specification is of the general notion of 

being a rela tional term o f degree ~ where ~ ~ 1. 
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l. 'Soc' (and any other primitive for an erstwhi1e proper name) is a 

re1ationa1 term of degree l. 

2. If R 
;o;;;n 

is a re1ationa1 term of degree n , then so is r_R 1 

- ~n 

3. If R an d S are re 1a tion a1 terms of degree ::, so is r(R uS ) , 
;;;n ==n =n ::;n n 

- --
4. If R is a re1ationa1 term of deg ree .!::!_, r (B_ X (SoclJ-Soc)

1
) , 

;;;n -n (.!::!_ +1) 

is a re1ationa1 term of degree <::+1). 

5. If R 
;;;:<:: ~) 

is a re1ationa1 term of degree (n+m), r(D. . 
-- ~, ••• ,1_ 

R ) , is a re1ationa1 term of degree n, where (as needed). 
;;;;;;.<:: +~) :: -

To faci1itate the notation, we may 1et 

Dl. 'V1 ' abbreviate '(SocU-Soc) 1 '~ 

and th en 

D2a. 'V2 ' abbreviate '(V1 X V1 ) 2 ', 

D2b. 'V3 ' abbreviate '(V
2 

X V1 ) 2 ', 

and so on. In addi ti on we may 1e t 

D3a. r(R X V
2

) 1 abbreviate r((B_ X V
1

) X V
1

) 
, 

-- ~ <::+2) -n <::+1) (.!::!_+2) 

D3b. ,.(R X V
3

) , abbreviate r((R 
-- ;;;, <::+3) ~ 

X V
2

) X V
1

) -, 
<::+2) (~+3) 

an d so on. 

D4. r < v X R ) 1 abbreviatesr(D (R X 

:: ;;;;:~ <:: +~) (~+1)' ••• ' (~+.!::!_) '1' ••• '~ ::;~ 

V ) ) 1' 
:: (.!::!_ +~) <:: +~) 

05. r(R X S ) I abbreviatesr((R XV) I'I(V X 
~ ;;;;m <:: +~) -;;;:n ~ <:: +~) :: 
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s ) ) 1 

-m (~ +~) (~ +~) 

In this way we can achieve the full effect of having Cartesian 

products. 

By a formula let us now, understand any expression of the form 

rv R l where R is a relational term of degree ~· The formulae are 
~ ~ ;;;:n 

to be understood as saying that such and such a relation of degree 

n has the kind of universality appropriate to n-adic relations . The 

only expressions allowed in this kind of logic are the relational 

terms. Let us therefore call it 'relational-term logic', or for 

short, 'RTL'. 

A few further abbreviations are useful. We may let 

06. 

07a. 

07b. 

r ( R (\ S ) 1 be s h or t f or r- (- R U - S ) 1 

=n ~n n ~n ~~ ~' 

'A' for 1 

' /\.2 ' f o r ' ( A 1 X A 1 ) 2 ' , 

an d so on, 

08. r ( B. :) ~ ) ; fo r r ( - R U ~ ) 1 
-n n n ;;;n n n 

and 

09. n <s 
;:;-n 

03 and 04 are definitionsof a familiar kind, 05 and ~ less so. Q2 
introduces the notion of the Boolean implexion of ~-adic relations , 

and 06 that of the Boolean identification of such. In terms of these 

the notions of inclusion and identity of n-adic relations may be 

introduced, by letting 

and 
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Dll. rR 
-=n 

S, abbreviate ry (R c:::l S) l 
~ n ;;::n ;;;n n 

Let us go on now to list some fundamental principles for RTL as 

follows . We first have some Boolean ones. 

Prl. 

Pr2. 

PrJ . 

Pr4. 

MP. If 

1-(R U R ) C R 
:;n =n n ;;;n 

1-RC(R 
~ =n 

u s ) 
,;;n n 

1- <.~ u ~ > c <~ u B 
-n -n n -n -n n 

1- <B ~ ~ > C ((T U R ) O(T U S ) ) 
=n ;;;n n •n ;;::n n n -n -n n 

1-V R 
n :;:;:;" 

and 1- R C S , then 
-=-n ~ 

j-V S 
n ;:::n 

These pr i nciples will be recognized as sufficient for providing for 

a Boolean algebra of ~-adic relations -- tagether wfth an existence 

assumption that will be given in a moment. MP is of course the 

adaptation of modus ponens needed for ~-adic relations. 

The following principles govern the restricted Cartesian products 

an d t h e r e 1 a t i on a 1 do m a in s • 

Pr5 . 

Pr6 . 

Pr 7a. 

Pr7b. 

Pr8. 
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t-(~R 
;n X Vl) 1) 

(~+ X Vl) (~+1) -(R 
=n 

t-((R V S ) 
;;;;-n ;;;;n n 

X V1) U 
(~+1) X Vl) (~+1) ( ( R 

;;;n 

(S X V1 ) ) 
-~ (~+1) (~+1) 

~(D (R X V ) ) = R 
1, •.• ,~ ~~ 1 (~+1) ~ =n 

1--(D (,...R X V ) ) = R 
1, ••• ,~ ... ~ 1 (~+1) ~ -~ 

1--(D -(R "'S ) ) C (-(D -R ) 
1' ••• ,~ =<~ +1) ~ -(~ +1) (~ +1) ~ • 1, ••• '~ =<~+1) ~ 

0 -(Dl, ••• ,~-~(~+1))~)~ 



Pr9. t-(0 ( -(R X V ) ) C (0 1, ••• , ~-1},(~+1) =~ 1 (~+l) ~ - 1, ... ,(~-1)' 

) -(R X V ) ) ) 
(~+1 ,.!:_ .;;;;~ 1 (~+l) (~+l) .!:. ' 

PrlO. t--(0 ' )-(R X 
1, .•• ' (~-1}' (~+1 -~ 

-(0 
1' .. ·.!:. 

( 0 - ( R 
1' ••• '(~ -1) '(~ +l)' .!:. .... ~ X V 1 )(~+l))(~+l))~, where oG 1 is 

any primitive for an individual constant, 

We have also some principles governing converses, as follows. 

Prll. t-(0. .R = -(0. .-R) , where .!_, ••• ,j_ are any.!:. 
~' ••• ,1:=~ ~' ••• ,.J_ ;;;;:~ ~ 

distinct positive integers, each ~ ~' 

Prl2. t-(0. .(R US)) C((O. .R) U(O. .S)) , 
~' ... '1. ,;;;~ =~ ~ ~ ~' ... '.J.. ;;:;.!:_ ~ ~' ••• '.J.. ;;;~ .!:. ~ 

where (etc.), 

PrlJ. 

Prl4b. t-(Ol,2( 0 1,2~2)2)2 = ~2 ' 

Prl4c. ~< 0 1,3,2< 0 1,3,2~3>3>3 !!3 

Prl4d. t-(02 1 3( 02 1 3~3)3)3 ~3 ' ' ' ' -
Pr 14e. t-(03,1,2(o2,3,1~3)3)3 ~3 

Prl4f. ~< 02,3,1< 0 3,1,2~3>3>3 ~3 ' 
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Pr 14g • t-(D3,2,l(D3,2 1 1~3)3)3 = ~3 ' 

and so on for relations of higher degree. 

Finally, we need a general principle concerning the uniqueness and 

exlstence of the monadic relation Soc and other relations repre

senting erstwhlle individual constants. 

Prl5 . t-oeC= -(D1 -((~X Vl)2 n ((D2,l (~X Vl)2 ~ Id2)2)2)1 ' 

where oG is any primitive for an individual constant (and Id
2 

is the 

relation of identity of individuals). 

These principles are by no means exhaustive but are given as mer e 

samples of principles that would be needed in any full axiomati

zation. 

We need not tarry here with the deductive development of RTL. Much 

work yet remains to be done to achieve the minimum axioms suffici ng 

f or the theory -- to say nothing of stating precis~ly what it means 

t o say this and then proving that it obtains. To do this last, in a 

s ati s fa ctory way, would require a semantical metalanguage, with its 

attendant axioms and rules, in which the proof could be carried out. 

A very considerable effort would be required to formulate such a 

metal a n guage for such a proof , and many unforseen technical diffi

cu lties would no doubt arise. The same of course is to be said for 

all -called "proofs" of consistency, completeness and independence. 5 

An objection that might be raised against the notation for domains 

u se d here is that it makes abundant use of numerical subscripts and 

ther e for e the t heories here presupposes arithmetic. But no. The 

nume r ical subscripts are used as mere notational markers, and their 

u se here is as mere syntactical abb reviation, as would become 

pe l l ucid i f the syntax were spelled out in detail in terms of conca

ten ation and shape-descriptions. 6 Also it might be objected that 

a 1 t h o u g h v a r i ab 1 e s such a s '~' , 'x_' , an d s o on , a r e n o t n e e d e d i n 

RA or RTL , abundant use is made of 'B. ' , and so on, as syntactical 
ll 

variables . Tr ue , but if the syntax, again, w~re fully spelled out, 

it in turn could be viewed as an applied relational-term logic 

without syntactical variables. 
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Let us note how relational domains are of use in giving logi~al 

forms of certain natural sentences. The first person ever to make 

use of them, or even to be aware of their existence, was pro bably 

C.S. Peirce. Let us turn, therefore, to an important paper of his 

of 1870.
7 

This was lon9 before he became aware of the quantifiers, 

and i t is interesting to note that he fel t the need o f generalized 

domains to handle certain natural noun-phrases. 

Consider, by way merely of an example, the sentence that "every 

lover of somebody who is a servant to nothing but a woman stands to 

nothing but women in the relation of lover of nothing but a servant 

of them." The two noun-phrases needed here may readily be symbolized 

in virtual-relation terms, and hence in RA or RTL. Let 'Lz' and 

•s
2

• stand for the dyadic relations of loving and being a servant 

of, respectively, and let •w 1 • stand for the class of women. Then 

the required noun-phrases, in quantificational terms, are 

and 

In the symbo lism of RTL, these become 

and 

Another example from Peirce is the sentence "every lover of somebody 

who is servant to nothing but a woman stands to nothing but woman 

in the relation of lover of nothing but a servant of them." The 

two noun-phrases here, in the notation of RTL, are, respectively, 

and 
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'-(Dl-(Dl,2((L2 X Vl)3~ ((Vl X 52)3 n (V2 X Wl)3)3)3)2)1' 

Peirce's too sentences ~e/then formed by placing the inclusion-sign 

'C' between the two relevant phrases. The results, incidentally, 

are logically true statements, as Peirce in effect o bserves. 

To the uninitiate, these examples may seem somewhat far-fetched. 

These and similar ro un-phrases, ro wever, alx> und in natural language. 

It is, therefore, essential that a metrod for handling them be 

available in any general theo ry o f rel ations adequate for he normal 

tasks expected of it. It is interesting to observe also '-that it was 

for a rotation for relational domains of any complexity that Peirce 

was struggling, in his early papers o n the algebra and lo gic o f 

relations, before ooming to terms with the quantifiers in his papers 

of 1883 and 1885. 8 

Let us go o n now to sh ow how RTL is but a step o r so reno ved fro m a 

kind o f combinatory lo gic o f relatio'ns, one in which the oo mbinato rs 

or operators apply 1D relations as the result.
9 

We · shall need just 

six such oombina1Drs, namely, 

S , N , P , C, I , an d E • 

S will pro vide fo r Boo lean sums on ~-adic relations, N for negatio ns, 

P fo r the restricted Cartesian pro ducts, C for conversion, I fo r 

inversion, and E for handling the construction of domains. Conversion 

and inversion may be explained -~ again -- in terms of virtual 

relations. 

is to represent 

and 
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r(CR ) 
;n n 

., 

rr~ ~1 ••• ~ 3.!! ~1 ••• ~ }
1

' 
t ~ (~-1) -~ ~ 

r (IR ) 1 

-;;;;::n n 



is to represent 

) 
I 

r( ~2 ~1 ~3 • • • ~ 3 B ~1 • • • ~ 1 · l n -n n S - -
E functions as a combinato r for fo rming re1ationa1 domains. Thus 

is to represent 

rf x 
( -1 

, 
x 3 (Ex ) R ~1 ••• ~~1 . 
-(~-1) -n ~n 

To see how these combinators function, 1et us note that (1) above 

may now be expressed by 

and (9) by 

1 (ER ) 1 

;;:2 1 

r-(E-R ) 1 
• 

;:;;:.2 1 

(11) above becomes 

(10) becomes 

and (12) becomes 

r (I ( CR ) ) 1 
;::;:n n n 

1 (E-(E(E-(E-(E-R ) ) ) ) ) 1 , 
;;;;6 5 4 3 2 1 

r(E(E( c?c C(I-(E-(C(C(C(E(C(C(C(CB) ) ) ) ) ) ) ) ) ) ) ) ) ) 1
, 

g/ -6 6 6 6 5 5 5 5 4 4 4 4 4 3 2 

and so on. 

The other combinato rs are such that 

r(S(R ,S )) 1, 
=n ~n n 
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r NB ' ' 
-n 

and 

r(PR ) 1 

=~ (~+l) 

represent the Ebolean sums, negation, and restricted Cartesian 

products, respectively. 

Here, as in RTL, all o ur fo rmulae may be taken to be of the form 

rv R, where 'V ' is defined as there. It is easy to see that the 
n ;:::::n n 

principles ~-PrT5 may all be expressed as principles in the new 

notation. 

This q uasi-co mbinato ry logic o f relatio ns is really merely RTL in 

a kind of notational disguise, Even so, it is just interesting 

e n o u g h p e r h a p s to b e g i v e n a 1 ab e 1 o f i t s o w n • L e t u s c a 11 i t ' CL R ' , 

the combinatory logic of relations. The use of the letters 'S', 

'N', 'P', and so on, is akin to uses of capital rom~n letters in 

Curry's formulations. It is interesting, too, to note that CLR, 

like RA and RTL, can be used as a surrogate for quantification-theory. 

In fact, it provides a kind of combinatory theory of quantification. 

Finally, i t sho uld be remarked that the theo ries of relations in 

this paper are sharply to be co n trasted wi th the mereo lo gical theo ry 

of them discussed previously • 10 However, that theory co uld readily 

be formulated as either an RA or RTL or a CLR, where 'P' and 'Ord' 

are taken as the only primitive non-logical relation symbols. The 

mechanisms of RA or RTL o r CLR would merely pro vide the underlying 

logic needed in place of the quantification theory actually used. 

And similarly for any o ther theory formulable in q a a-rrt'bficatio nal 

terms. 

Boston Universi ty 
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