Richard M. Martin

ON RELATIONAL DOMAINS, THE ALGEBRA OF RELATIONS,
AND RELATIONAL-TERM LOGIC

"Mathematics is tricks."
Henry Pollock
"No, mathematics is thought."
Abner Shimony

Well, perphaps the appropriate addendum to the foregoing dialogue
is to remark that mathematics is thought about tricks and the
reasons for them - about the thousands upon thousands of minutiae
that make up mathematical language when stripped to its ultimate
notions, in the manner, say, of Principia Mathematica and allied
systems. Of particular importance here are the technicalia of quan-
tification theory, as formidable a bag of tricks as has e’er been
thought up. That this is the case becomes especially evident when
that theory is looked at in the light of other theories that
purport to take its place in some fashion or other - such as

relational algebra, combinatory logic, or predicate-functor logic.

In a previous paperl a preliminary sketch of a pure algebra of
n-adic relations - call it ’RA’ - was put forward, ’pure’ in the
sense that no set-theory was made use of in any way at either the
object or metalinguistic level. This kind of formulation is in
marked contrast with previous formulations. A purported inter-
pretation of the theory was given in the theory of virtual classes
and relations as based on the ordinary first-order theory of
quantification.2 No axiomatization of RA was given, however, and
only a feeble attempt was made to show how quantification theory
itself is contained within it in a kind of notational disguise.
Let us attempt now, in the present paper, to formulate a simpler

kind of theory as a surrogate for it.

Let us recall, first, some basic features of RA itself and of the
theory of virtual relations on which it is based. A supply of
primitive non-logical relational constants, each of specified

finite degree, is presupposed. The algebra RA is thus an applied
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one in this sense (but pure of course in presupposing no set-theory).
Boolean operations of fo rming sums, products, and negations of n-adic
relations are also presupposed, as well as the universal and null
relations of each degree, n, where 2.}: 1. Where n = 1, we speak of
a monadic relation, as, is more or less customary. In addition, an
operation for the Cartesian product of two relations is needed, as
well as a notation for all the domains of a relation. The notion of
domain here is the generalized one appropriate for n-adic relations.
These latter two notions seem not to have been studied very much for
their own sake and in a generalized form, but are of the highest
interest philosophically.

These various notions may be characterized in terms of virtual

relations as follows. Let
X o waX ==X mmeee==X ==
{"1 *ﬂa 1 Ll }

be the virtual relation among X , ..., X where ’
=1 A,

=X mmeee==X ==7,
n ! e
some formula of quantification theory constructed in terms of the

non-logical relational primitives, holds. We can then let

T_-R 7 abbreviate r{x ceeX D AYR X X ’}1,
i xR n

o) A “n"1

.

,V; abbreviate ’ {x ceeX DX =X X =X .. o X=X )}’
n

- 1 1 2 2 n n

and

’ ’ abbreviate ’~v Y,
AN .
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These abbreviations, within the theory of virtual classes and
relations, introduce the respective Boolean notions. The Cartesian

product may be defined by letting

r L i F R x X g S sesy )
R S ) abbreviate X eeeX Y e0sy DRX c0ux o Sy Yy
(znx = (nrm) {‘1 Ty TmT =Tl A Splom

No te that the Boolean operations are homeoadic in the sense that the
result of the operation is of the same degree n as that of the
operands, and that the two operands (of the sums and products) are
of the same degree n. The degree of the Cartesian product, however,
is cumulative in the sense that the degree (n+m) of the result of
the operation is the (arithmetical) sum of the degrees n and m of
the two operands. The notion of the identity of individuals used
here may be taken either as a primitive (as in quantification theory
with identity) or else defined, say, in the manner of Hilbert and
Bernays.3 Let it be represented here by ’Id2’, no matter how intro -
duced. ’

The explanations in the foregoing paragraph are of course merely
heuristic, and play no role in RA itself. They merely help us to see
how its primitives are to be interpreted. And similarly now for the
generalized notion of the domain of a relation.

For a dyadic relation R the first domain is merely

2!
(1) 25 > (Ey)R, ﬂ?) 7
and the second or converse domain is
(2) (L 2 (ER, xy ]

For a triadic relation R we must provide not only for

3,

(3) ii S (Ey) (Ez)Ry xyz },
(&) (x S(Ex) (Ez)Ry xyz §,
and
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(5) ig D (Ex) (Ey)Ry xyz} ,

but also for

(6) {xy 2(Ez)Ry xyz},
(7) {x2D(Ey)Ry xyz}
and

(8) {YzD(EX)Ry xyz ] .

The first of these we may think of as the domain, the third as the
converse domain, and the second as the middle domain. The other
three are relational domains, but no obvious terminology for them

is available. In the case of tetradic (or quadratic) relations, the
situation is still more complicated. To provide for all these, and
in general for all the domains including the relational ones, let

us let

N i
r(Di,...,ﬁ gﬂ)j’ abbreviate "{51...5?(55) (E_xm)gn xp eee 2 30

where i, ..., h, k, ..., m are any n distinct positive integers
each = n, i, ..., h are just j in number (J=1), and i, ..., h

and k, ..., m are taken in any order of magnitude, for n=2.

We note now how (1)-(8) may be represented or symbolized in terms of
—_— . : . .
D’, (1) in fact is merely (DlRZ)l and (2) is (DZRZ)l’ (3) is (DlR )

(4) is (DZRB)I’ (5) is (D3R3)l. (6), (7), and (8) are themselves

. . ’ ’ ’ ’
dyadic relations represented by (Dl,ZRB)Z > (Dl,BRB)Z and
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’(02,3R3)2’ respectively. And so on for relations of higher degree

and their domains, relational and o ther.

Let us note that expressions such as ’(Dl,Z,BRB)B’ are also signifi-
cant, so that a relation is allowed to be one of its own domains.

But so is ’(01’3’2R3)3’ significant, and ’(D2,1’3R3)3’, ’(DZ,B,IRB)B”
’(03,1’2R3)3’, and ’(D3’2’1R3)3’. Each of these represents one of the
converses of the triadic relation R3 just as ,(DZ,lRZ)Z’ represents
the converse of RZ‘ And similarly for relations of higher degree, so

that the general theory of converses is included in the general theory
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of domains.

Note, by way of a few further examples, that

9 ¢ x (y)R xy1"
(9) Z__EB IR, ~x}
is represented here by

.
~(p, -R) ",

=2

(10)  "{x 3 (Ey) (z) (w) (Ew) (VR xyzwuy }

by
r i
(03-(Dy =0y 5,3,4P1,2,3,4,5,"RIs)I) )
(11) "ixwxz =R xyzw}"
=g ==
by ¢ R,

Py,5,2,38, 04

(12) r{il Ea(Ei)(EE)(E)(Ex)ﬁs xvyuw131

by

r A
(D) 270y 5 3,401 5 34,501 ¢ 5 5.4 3RIg)s)y), -

In the formulation of RA, all talk of virtual classes and relations

is, of course, dropped, the effect of such being achieved by use of

the Boolean notions, Cartesian products, and domains. In an algebra
there is always a primitive ’=’ for identity, so that rB = §_1is

the only kind of atomic formula admitted, but with ’ea’hgnd ’vq, say,
available as truth-functional primitives to provide for molecular
formulae. The basic principles of RA -- and, ultimately, the axioms --
must provide for the truth-functions, for identity as between n-adic
relations, for the Boolean notions, and for Cartesian products and
domains., A list of some of the principles needed was put forward in
the previous paper. Not all of these are required as axioms, although
some additional ones are. .

In the original presentation of RA in Mind, Modality, Meaning, and
Method, the sentence
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(13)
7(Ex) (y) (Eu) (v) T, xyuv’

was said to be expressible by
’ - - = ’
CA53 02 -(0) 3 =Ty =\,

But unfortunately this is not correct. This latter states, in

virtual-relation terms, that
CJifﬂ.EB(EL)(El)‘T4 xxuv} = /\lr

or, equivalently, that
(15) ' (Ex) (Eu) (y) (v)-T, xyuv .

But of course (15) is not equivalent to (13), although it logically
implies it. The form for (13) should be rather

- - - ’
=(Dy=(Dy 5=(Dy 5 3-Ty)3)p)y = AN
as may easily be verified. And, similarly, the Axiom of Pairs of

set-theory has the form

P(Dy =Dy 5 3= (D) 5 5(E, X V,),),) N((Tdy X V,),U (D

1,3,2,4

(Id2 X V2)4)4)4)4L}(—(Dl,4,2,3(E2 X v2)4)4r\(-(1d2 X vz)qr\

o ’
—(01,3,2’4(1112 X Vo)), )30, =No's
and the given instances of the Aussonderungsschema the form
r
(D= (D) ,=(((E, X V) 3NOC(R) X V) 3Dy 3 5(E, X Vp)3)5) 5,
-

U (-(E, X VD3N (=(R) X V,)3U=(D) 5 ,(E, X V1)3)3)3)3)3),), =V,

Given a relation Rn, for E.EE 2, the totality of its converses together
with all its domains constitutes a family of closely affiliated
relations. All of the affiliates are constructed from the given one
and are recognized as relations along with it. In some sense, they

are "given" along with the original one, merely awaiting a proper

73



notation, as it were. Once we have such a notation, RA is seen to

be merely an extension of an essentially Boolean theory as augmented
with Cartesian products. The admission of the relations affiliated
with a given relation thus seems not only natural, but a small price
to pay for the algebraic richness forthcoming as a result. Further,
RA itself may now be seen to wholly Booleanized, so to speak, all
erstwhile relational notions -- intrisically relational or non-
Boolean ones -- being now assimilated in the theory of domains.

It should be observed that ’=’ for identity as between n-adic relat-
ions in RA is a very strong primitive indeed, and the two axiom-

schemata governing it are very strong principles. These are that

}'__R, =R ’
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where there are occurrences of gn in TR ==

It is interesting to observe that the effect of having identity may
be achieved in a much more economical way. The result will no longer
be an algebra, however, but a special kind of logic of relations.

We should observe also that the truth-functional connectives may

be eliminated as primitives of RA without loss. Recall the principles
that

Feo R = v = (D (V, X -R )

- n = (n+l)’1 7 V10
k(R :Vﬂ.‘%:vﬂ):(gﬂr\g_ﬂ)ﬂ =Y, ,
and
(o0R =V ves =Vo= 0.V x-nas)) ) =\,
F =n n M =n n 171 =n :34£ (n+1) 1 \/l

or, better,
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(R =V vSsS =V) = (-0,(V, X -R ) ) U -(D_(V, X
|—=D_ R % 'm TS en 1 11
-S ) Jydq =V, e
“n (n+l) 4 4

Whenever, in RA, we wish to use a truth-functional connective, we
may eliminate it in view of these equivalences.

It should be observed also that the only atomic formulae we need
consider are of the form rI = V7'in view of the Boolean principle

mﬂ n

that

PR =S ((-R U
“n ~n "n

HI%)

) AN(RU-S)) =V .
i A "n "n
It is true that ’=’ occurs in this equivalence on the right-hand
side. In place of rl = V7, let us now write merely

“n n

I’V I _\,
E""n

to the effect that such and such and n-adic relation is universal

in the sense appropriate to n -adic relations. No properties of
identity as such need then be postulated, as we shall see in a
moment. Actually, we can simplify RA in another respect also, by
using primitively only Cartesian products of the form

r(én X Vl) (E+1; , where Vl is the universal monadic relation.

We shall see how the full effect of having Cartesian products, may
be achieved in this way.

Let us go on, now, to formulate the essentials of RA, but without
using identity or the truth-functions. As primitives, let us take
’-? for Boolean negation, VU’ for Boolean sums, ’X’ for the
restricted Cartesian products, and ’D’ with suitable subscripts for
relational domains. Erstwhile individual constants are to be handled
predicatively, so that ’Soc’, for example, may represent the predicate
’Socratizes’. At least one such primitive is presupposed, say ’Soc’
itself.

The following recursive specification is of the general notion of

being a relational term of degree n where n = .
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1. ’Soc’ (and any other primitive for an erstwhile proper name) is a

relational term of degree 1.

2, If R is a relational term of degree n , then so is "-R 7
Nn -
3. If R and S
~n ~n

are relational terms of degree n, so is "(R U
~n

4, If R is a relational term of degree n, " (

R X (Soc U—Soc)l)
= =n

is a relational term of degree (n+l1).

5. If R is a relational term of degree (n+m), T(p, %

= (n+m) i,000,F
R ) 'is a relational term of degree n, where (as needed).
=(n+m) -

To facilitate the notation, we may let
Dl. °’V,’ abbreviate ’(SocU-Soc),’,
and then

D2a. ’VZ’ abbreviate ’(Vl X Vl)z’,

D2b. ’V3’ abbreviate ’(Vz X V),

and so on. In addition we may let

D3a. (R X v,) 7 abbreviate T((R X V) X V) B
n (n+2) *n (n+1) (n+2)

D3b. (R X V) T abbreviate T((R X V,) X V) 1
~n (n+3) n (n+2) (n+3)

and so on.

D&, (v X R) T abbreviates (D (R X
n o *m (n+m) (m+1),.ev,(m+n),1,.c00,m =m

V) ) 1,

n (n+m) (n+m) '

D5. (R X S ) 7 abbreviates ((R X V) NV X
*n "m (n+m) *n m (n+m) n

5

n n

9

(n+1)



) 1
®m (n+m) (n+m)

In this way we can achieve the full effect of having Cartesian

products.

By a formula let us now understand any expression of the form
'V R Twhere R is a relational term of degree n. The formulae are
nmm gLt

to be understood as saying that such and such a relation of degree
n has the kind of universality appropriate to n-adic relations. The
only expressions allowed in this kind of logic are the relational
terms. Let us therefore call it ’relational-term logic’, or for
short, ’RTL’.

A few further abbreviations are useful. We may let

p6. "(RAS ) 7 be short for "-(-R U-S )
"n Tnon "n "nn,

D7a. ’j\l’ for ’—\/l’ y
p7b. A\, for (A, X Al)z’ ,

and so on,

8. (R s ) for "(-R US) T,
_ = A =

D9. "(Re=S )" for (R DS) NS DR) ) T.
= *n “n n = =

!
|15
IE

D3 and D4 are definitionsof a familiar kind, D5 and Dé less so. D5
introduces the notion of the Boolean implexion of n-adic relations,
and Dé that of the Boolean identification of such. In terms of these
the notions of inclusion and identity of n-adic relations may be

introduced, by letting

p1o. "R C S T abbreviate "V (R D S5 ) 7,
— ® = no= =

=]
=]
=]

and
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D11, TR =S 7 abbreviate rv (Rca S ) 7.
nTh noTn Tnn

Let us go on now to list some fundamental principles for RTL as

follows. We first have some Boolean ones.

Prl. F(R-UR) CR ,
hoo Tnn o Tn
Pr2. FRC((R US) ,
TR n
Pr3. F(R US) C (S UR) ’
"n "nn “r, an
Pr4, F(RDS) CWUIT UR)IOD((T UsS)) ,
“n "ha Jn "nn "n “nnn
MP, If }V R and FR C S, then }V S .
™ ™ h nTn

n,
These principles will be recognized as sufficient for providing for
a Boolean algebra of n-adic relations -- together with an existence
assumption that will be given in a moment. MP is of course the

adaptation of modus ponens needed for n-adic relations.

The following principles govern the restricted Cartesian products

and the relational domains.

) = -(R X Vy)

Pr5. F(-R XV, R ¥
n (n+1) “n (n+l) *

Pré. F((R U S) X V) = ((R X V;) V)
. Tnon (n+1) “n (n+1)

(s X v,) ,

n (n+1) (n+1)

Prlae PiBy o vesn'Bn * Vitimers'n = Ba

Pr7b. F-(Dl,...,ﬂ(-gﬂ X vl)(ﬂ+l))£ = Bﬂ "

)

("(Dl,...,ﬂ_.—R.(gﬂ) n

Pr8. h-(Dl’_..,ﬂ'(§(2+1)O §(2+l))(g_+l))ﬂ =

D'(Dl,...,2"2(2+1))5)_r1 ’
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Pr9. "(Dl,...,(g_—l) (n+l)-(R X Vl)(£+l))2C'(Dl,..-,(ﬂ_'l)’

(E+l),£-(§2 o Vl)(ﬂ+l))(ﬁ+l))g ’
Pri0. #=(0y . (n-1), @+ ®a X Dan?n "1,

) where oCl is

(Dl,...,(g—l),(g+l), ﬂ'(EQ X Vl)(1+l))(g+l) n’

any primitive for an individual constant,

Gen. If vV R then Vv, _(D(ﬂ+l)(-§5 X Vl)(1+l))l'

n =

We have also some principles governing converses, as follows.

Prll. F(Di,---,Jg = _(Di!""i-gﬂ)ﬂ’ where i,...,j7 are any n

distinct positive integers, each é n,

Pri2. »-(Di,_-_,J(R usn)n)nc‘_ ((Di’_“’.g ) U(D;

where (etc.),

(D S).).

yoeeyd= nn‘D i,00.,3=n"n’n

Pri3. "(25921)1 C ((Di

Prlk4a. l-([)z’l(D2 1R 2)2)2 =Ry

Prisb. »(Dy (D) ,R,),), = Ry »

Prl4c., F(DI,B’Z( 1,3, 2B3)3)3 = B3
Prlad. P(DZ’1,3(D2,1,3§3)3)3 o
Prise. r(Dy 3 5(D, 5 1R3)3)3 = Ry,
Erlif. #40, 5 1(03 4 sBy)5)5 = By &
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Prisg.  #(Dy , ,(D3 5 1R3)3)3 = Ry,

and so on for relations of higher degree.
Finally, we need a general principle concerning the uniqueness and
existence of the monadic relation Soc and other relations repre-

senting erstwhile individual constants.
Prls. Fel= -(D;  -(( X V), N (D, 4 (L X V), OIdy)5)5)

where oG is any primitive for an individual constant (and Id2 is the

relation of identity of individuals).

These principles are by no means exhaustive but are given as mere
samples of principles that would be needed in any full axiomati-
zation.

We need not tarry here with the deductive development of RTL. Much
work yet remains to be done to achieve the minimum axioms sufficing
for the theory -- to say nothing of stating precisely what it means
to say this and then proving that it obtains. To do this last, in a
satisfactory way, would require a semantical metalanguage, with its
attendant axioms and rules, in which the proof could be carried out.
A very considerable effort would be required to formulate such a
metalanguage for such a proof, and many unforseen technical diffi-
culties would no doubt arise. The same of course is to be said for

all-called "proofs" of consistency, completeness and independence.5

An objection that might be raised against the notation for domains
used here is that it makes abundant use of numerical subscripts and
therefore the theories here presupposes arithmetic. But no. The
numerical subscripts are used as mere notational markers, and their
use here is as mere syntactical abbreviation, as would become
pellucid if the syntax were spelled out in detail in terms of conca-
tenation and shape-descriptions.6 Also it might be objected that

although variables such as ’x’, ’y’, and so on, are not needed in

?
'R 7, and so on, as syntactical

=
variables. True, but if the syntax, aaain, were fully spelled out,

it in turn could be viewed as an applied relational-term logic

RA or RTL, abundant use is made o

without syntactical variables.

80



Let us note how relational domains are of use in giving logical
forms of certain natural sentences. The first person ever to make
use of them, or even to be aware of their existence, was probably
C.S. Peirce. Let us turn, therefore, to an important paper of his
of 1870.7 This was long before he became aware of the quantifiers,
and it is interesting to note that he felt the need of generalized
domains to handle certain natural noun-phrases.

Consider, by way merely of an example, the sentence that "every
lover of somebody who is a servant to nothing but a woman stands to
nothing but women in the relation of lover of nothing but a servant
of them." The two noun-phrases needed here may readily be symbolized
in virtual-relation terms, and hence in RA or RTL. Let ’LZ’ and
’SZ’ stand for the dyadic relations of loving and being a servant
of , respectively, and let ’Wl’ stand for the class of women. Then

the required noun-phrases, in quantificational terms, are
{i D(Ey) ((2)(S, yz DWz) . L, ﬂg y

and
’ {5 S Uz) (L, x2D5, zy) DW,; x)‘g’.

In the symbo lism of RTL, these become

(D ‘(Dl,z - (v x s?_)3£)(v2 X W3 N (L, X Vi)3)3),)y!?

and
=Dy =Dy H(Dy 3 5Ly X V)3 O (V) X S,)3) 3D (Vy X Wi)g)3)g),) 7.

Another example from Peirce is the sentence "every lover of somebody
who is servant to nothing but a woman stands to nothing but woman

in the relation of lover of nothing but a servant of them." The

two noun-phrases here, in the notation of RTL, are, respectively,

=(Dy=(Dy 5Dy 5 S (0L, X V) 3DV X S,)3) 3NV, X WX v

1 1)3)3)3)2)1’

and
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)5)sdsdy”

( 3737271

’—(Dl-(Dl,z » X vl)3:D ((vl X 52)3 f\(v2 X wl)3

Peirce’s tw sentences are then formed by placing the inclusion-sign
* C’ between the two relevant phrases. The results, incidentally,
are logically true statements, as Peirce in effect observes.

To the uninitiate, these examples may seem somewhat far-fetched.
These and similar noun-phrases, however, abound in natural language.
It is, therefore, essential that a method for handling them be
available in any general theory of relations adequate for the normal
tasks expected of it. It is interesting to observe also that it was
for a o tation for relational domains of any complexity that Peirce
was struggling, in his early papers on the algebra and logic of

rel ations, before coming to terms with the quantifiers in his papers

of 1883 and 1885.°

Let us go on now to show how RTL is but a step or so rem ved from a
kind of combinatory logic of relations, one in which the combinators
or operators apply to relations as the result.9 We shall need just

six such combinators, namely,
S, N, P, C, I, and E.

S will provide for Boolean sums on n-adic relations, N for negations,
P for the restricted Cartesian products, C for conversion, I for
inversion, and E for handling the construction of domains. Conversion
and inversion may be explained -- again -- in terms of virtual

relations.

T(cR )
“nn

is to represent

and

82



is to represent

-

-

{§25153...19;R_ 5153
& i1 n

E functions as a combinator for forming relational domains. Thus

T(ER ) 1
~n (n-1)
is to represent
r a
251 wos X D(EX IR x; «ve x ¢
(n-1) n-n n

To see how these combinators function, let us note that (1) above
may now be expressed by

r(EB) '1’
w2 1

and (9) by

(11) above becomes

F(I(CR) ) 1,
“nonon
(10) becomes
T(E-(E(E-(E-(E-R ) ) ) ) ) 1,
~6 54 321
and (12) becomes

r(E(E(C(C(I (E-(C(C(C(E(C(C(C(CR ) ) ) ) ) ) ) ) D)) ) ) ) !
=6 666555544444 32

and so on,

The other combinators are such that

T(s(R ,5)) 7,

n"n n
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and

T(PR ) k

“n (n+1)

represent the Boolean sums, negation, and restricted Cartesian
products, respectively.
Here, as in RTL, all our formulae may be taken to be of the form

V. R 7, where ’V ’ is defined as there. It is easy to see that the
n ~n n
principles Prl-Prl5 may all be expressed as principles in the new

notation.

This quasi-combinatory logic of relations is really merely RTL in

a kind of notational disguise, Even so, it is just interesting

enough perhaps to be given a label of its own. Let us call it ’CLR’,
the combinatory logic of relations. The use of the letters ’S’,

’N’, ’P’, and so on, is akin to uses of capital roman letters in
Curry’s formulations. It is interesting, too, to no%e that CLR,

like RA and RTL, can be used as a surrogate for quantification-theory.

In fact, it provides a kind of combinatory theory of quantification.

Finally, it should be remarked that the theories of relations in
this paper are sharply to be contrasted with the mereological theory
of them discussed previously.lo However, that theory could readily
be formulated as either an RAor RTL or a CLR, where ’P’ and ’0Ord’
are taken as the only primitive non-logical relation symbols. The
mechanisms of RA or RTL or CLR would merely provide the underlying
logic needed in place of the quantification theory actually used.
And similarly for any o ther theory formulable in quantificational

terms.

Boston University
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