

This exhibition is an extraordinary
experiment in educational policy!
Join us and let’s launch it together!

Editorial 2
 Peter Weibel

Open Codes 101 9
 Exhibition Manual

 13

 17

 20

 23

 26

 29

 32

 35

Signal Codes and Machine Codes 38
 Franz Pichler

Works in the Exhibition 42

#GenealogyOfCode
 #Binary #Computing #NumeralSystem #Babel

#Encoding
 #MorseCode #ProgrammingSound #Algorithm

#Software #Hardware #Interface #Decoding

#MachineLearning
 #ArtificialIntelligence #Cybernetics

#PatternRecognition #AutonomousSystems
#SelfDrivingCars #Drones #Robots

#AlgorithmicGovernance
 #BigData #QuantifiedSelf

#Labor&Production
 #Industry4.0 #InternetOfThings #Programming

#SmartFactories #Automation #Work4.0

#AlgorithmicEconomy
 #HighFrequencyTrading #Bitcoin

#Cryptocurrencies #Decrypt #Blockchain

#VirtualReality
 #HMD #ComputerSimulatedEnvironments

#AugmentedReality #ComputerGeneratedDesign
#Escapism

#GeneticCode
 #DNA #SourceCode #Bioengineering

#Phenotype #DNADataStorage #Genotype

2

Today we live significant portions of our lives in an artificial, human-
made world of data. Digital codes provide access to this world.
When we turn on a mobile phone, for example, we are immediately
confronted with the prompt “enter passcode.” In Paris it is also
commonplace to get into a house or room by entering a numerical
code at the door. Codes are crucial keys for access to our contem-
porary world, both analogue and digital.
 The oldest codes in our culture include alphabets and
numeral systems. In communication studies, a language is desig-
nated as a code in the broadest sense. All communication rests
on the exchange of information generated by the sender using a
given code and interpreted by the recipient according to the
same code. More generally speaking, then, a code is based on a
character set; it forms the instructions for depiction so that the
characters of one character set can be clearly assigned to those of
another. For example, the stream of sounds of the spoken English
language can be assigned to the 26 letters of the Latin alphabet in
order to represent the spoken vowels and consonants in writing.
This visual alphabetical code of 26 letters can, in turn, through
the use of short and long sound signals, be translated into Morse
code. The essential characteristic of a code, then, is its translat-
ability from one code to another. But what is most astonishing is
that a virtually unlimited number of sentences can be produced
from either the 26 letters of the Latin alphabet or the three signs
of Morse code (short signal, long signal, pause), that is to say,
a potentially infinite amount of information can be coded.

Ed
it

or
ia

l
Pe

te
r

We
ib

el
Editorial

 To understand the world
 we inhabit.
 To understand the world
 we live in.
 To understand the world
 that sustains us.

3

	 Morse	Code

The signals of Morse code are transmitted via an electromagnetic
telegraph. These characters can be sent as sound or radio signals,
as an electrical impulse via a telephone line through the interrup-
tion of a constant signal with a button, or optically by switching a
light on and off. Morse code fundamentally consists of two states,
the signal and the pause, and a temporally variable signal length.
This transmission method is called Morse telegraphy. It was named
after the painter and inventor Samuel Morse, who constructed the
first model of a functional electromagnetic telegraph in 1833. Ini-
tially it was only able to transmit ten digits, which were translated
into letters and numbers according to a coding chart (a = · –). In a
later, more developed form, standardized Morse code provided the
vital radio technology for seafarers.

	 Numerical	Code

While the alphabetical code predominated as the primary code
for human culture and communication for thousands of years,
today numerical code dominates our world, as the examples cited
above show. This code essentially consists of the ten numerals
1 to 9 and 0, through which an almost infinite number of numbers
can be formed. In 1697, Gottfried Wilhelm Leibniz achieved for
numerical code something similar to what Morse would later
achieve for alphabetical code.1 Leibniz proved that all numbers can
be represented by just two digits, 0 and 1. He did not take words,
images or numbers as counterparts for objects as was usual, but
rather allocated digits to numbers for the first time: “Numbers can
be used to express all kinds of true sentences and deductions”
(Leibniz, De progressione dyadica, 1679) Leibniz’s binary number
system, his binary code, with which he began to translate words
and sentences into numbers, was a prerequisite for the digital
code of today.
 As all information in the digital world is processed as
numbers, letters of the alphabet and numerals are depicted as
bit sequences in the computer. The combinations of 0 and 1 (bits)
can be stated as numbers, signs or letters (e.g., a = 1100 0001,
b = 1100 0010). In coding theory, the elements that make up the
code are called “code words,” and the symbols that make up
the code words are called the “alphabet.” Whereas until recently,
the code systems of language and writing served the purposes
of communication between people, today many code systems are
available which also enable people to communicate with machines
and things. These include the bar codes and QR codes of mer-
chandise management, as well as the important ASCII (American
Standard Code for Information Interchange), which is used for
coding character sets.

4
Ed

it
or

ia
l

Pe
te

r
We

ib
el

In computer science, the text of a computer program that is written
in a programming language in a way that is legible to people is
called source code, source text, or program code. It is created
according to the rules of the respective programming language.
Source code is often written in ASCII code. In order for the
compu ter to execute the source code, it has to be converted into
machine language, that is, into commands that can be executed
by a processor.

	 On	the	History	of	Digitization

Important twentieth-century philosophical books bear titles such
as Word and Object (Willard Van Orman Quine, 1960) and Les
Mots et les choses (Michel Foucault, 1966)2. These books tell of
an analogue world that consists primarily of things and of the
relationship between things and words. Thus in these texts,
language is the instrument that orders the world. Hence Ludwig
Wittgenstein’s famous dictum, “The limits of my language mean
the limits of my world.”3

 Indeed, language was the first tool which enabled people
to explain and shape the world. People gave names to things,
and these relations between words and things were decisive for
culture and civilization for thousands of years. Just as people
gave names to things, they also assigned pictures to things, which
gave rise to a second cultural technology; the art of imagery,
from painting to photography. The things also generated sounds;
moreover, people even created new things especially to pro -
duce sounds.
 The world of images, words, and sounds was soon joined
by the world of numbers. Mathematics is the world of numbers.
The evolution of digitization proceeded in three stages. The first
stage of digitization, or rather the mathematization of the world,
began with the mathematization of physics. In 1623, Galileo Galilei
wrote, “Nature is a book written in the language of mathematics.”4
Depicting things in words and images in itself represents a
considerable level of human abstraction. Expressing the world in
numbers which took on a life of its own as mathematics, was the
as yet highest stage of a cultural technology that distinguished
people from all other living creatures. This increased abstraction
through mathematics and the development of the natural sciences
as mathematical disciplines digitization began in the proper
sense 400 years ago. Mathematics became a universal language.
 To put it simply and schematically: in the seventeenth and
eighteenth centuries the mathematization of physics took place
(1st stage), and in the nineteenth and first half of the twentieth
century the mathematization of thought (2nd stage). In the latter
half of the twentieth century both tendencies converged in
the development of electronics (3rd stage). In his monumental

5

Philosophiae Naturalis Principia Mathematica of 1686, Isaac
Newton laid the foundations for describing nature in mathematical
terms. Joseph-Louis de Lagrange’s 1788 masterpiece Méchanique
analytique was the first work to offer a full description of the
universe on the basis of pure algebraic operations. He carried
physics over into analytical mathematics. Lagrange algebraized
mathematics and mathematized physics. This algebraization of
physics led to the second stage of digitization: the algebraization of
logic (of formal thought). Logical forms were captured with the
aid of mathematical methods and terms. As a response to Newton’s
Principia, Bertrand Russell and Alfred North Whitehead published
their three-volume work Principia Mathematica, 1910–1913. Like
Gottlob Frege, who used his 1879 work Begriffsschrift. Eine der
arithmetischen nachgebildete Formelsprache des reinen Denkens
to translate thought into mathematical formulas, Russell and
Whitehead portrayed thinking and logic in mathematical terms.
 A milestone was set by George Boole who defined the laws
of thinking as laws of formal logic and these in turn, building on
Lagrange, as algebraic mathematics. In The Mathematical Analysis
of Logic (1847) and An Investigation of the Laws of Thought (1854),
Boole proved that logic and algebra are identical by expressing
logical statements as algebraic equations. Alan Turing, ultimately,
brought these tendencies to mathematize the world, language,
and thought to their culmination in his famous 1936 essay “On
Computable Numbers.” Turing’s depiction of the calculability of
numbers and number processes is considered the foundational
paper for the development of the digital computer, for what is
known as the Turing machine. Henceforth one no longer just
calculated with numbers but rather numbers became calculable.
With calculable numbers, nature becomes computable.
 With the further development of the computer from a pure
calculating machine to a machine of images, sound, and language,
a new world of data emerged. Images and texts can be computed
and visual and acoustic worlds can be simulated. In a word, every-
thing that was previously made up of objects, words, sounds,
and images can be represented in numbers and constructed from
numbers. The crucial aspect of this digital cultural technology
is a hitherto unimaginable reversibility. In the analogue world the
principle of irreversibility prevails in the relationship between
things and words or images. Things can be transformed into words,
but not words can be retransformed into things, because the word
“chair” is not actually a chair. Things can be transformed into
images, but not images into thing, because the picture of a pipe is
not a pipe, to cite René Magritte’s 1929 painting La trahison des
images, which displays the image of a pipe and below it the words
Ceci n’est pas une pipe – this is not a pipe. In the era of digitiza-
tion, words, images and sounds are transformed into data, and –
for the first time in human history – this data can be transformed

6
Ed

it
or

ia
l

Pe
te

r
We

ib
el

back into sounds, images, and words. And with 3-D printing data
can even be transformed into things. The relation between data
and things, words, images are reversible. The language of data,
algorithms, and programming languages has become a universal
language out of which the world of sounds, images, texts, and
things emerges. Thus mathematics has long since ceased to be
just the language of nature; it has become the language of culture.
The book that describes the contemporary world must be titled
The Things and the Data. The relationship between things, words,
and images used to be irreversible. However, now the relation-
ships between data and words, images and sounds are reversible
in the digital world.

	 Digital	Codes

Digital cultural technology, however, has also provided the foun-
dations for another revolution, which will possibly usher in a new
era. Culture to date has been based on two-dimensional notation:
notes, numbers, and signs on paper are notated and fixed just
like writing. The computer, however, enables the simulation
of moving three-dimensional spaces, and in this way enables
a future, three-dimensional notation which is already being
used today by architects and designers. 3-D cinema was the first
attempt along these lines, but it is with 3-D printing that this
future begins to become a reality through the aforementioned
possibilities of reversible transformations. Thanks to the develop-
ment of this cultural technology, which renders the relationship
between the worlds of things and signs reversible, we will live
in an environment that is underpinned by sensors and intelligent
agents, managed by codes and algorithms, and equipped with
artificial intelligence.
 The fact that this has become possible goes back to
“The Unreasonable Effectiveness of Mathematics in the Natural
Sciences,” which was ascertained by Nobel Laureate Eugene
Wigner in 1960. Reality is what can be expressed mathematically
and electronically controlled. The best example of this is Claude
E. Shannon’s 1937 master’s thesis, A Symbolic Analysis of Relay
and Switching Circuits. In this work, Shannon proved that Boolean
propositional logic can be used with the logical values 0 and 1
to control a remote-controlled switch with two switch positions
that acts electromagnetically and is operated by an electric current.
As the title of his work conveys, relay and switching circuits,
arrangements of relays and switches, are mapped onto Boolean
propositional logic in a symbolic analysis. Boolean logic thus
becomes switching algebra. The linking together of the rules of
logic with the controlling of switching circuits, that is, the use
of the binary qualities of electrical switching circuits (on – off, 1 – 0,
electricity – no electricity) to execute logical operations, henceforth

7

became definitive for the construction of all electronic digital
computers. Shannon showed that the mental formulas of Boolean
algebra could be transformed into material switching algebra.
Formal thought was carried over into electronic switching circuits
according to the rules of Boolean algebra. Electronics became the
physics of mathematics.
 In connection with the discovery of electromagnetic waves
by Heinrich Hertz (1886–1888), that is, the invention of telecom-
munications (the telegraph, the telephone, television, radar, radio,
satellites, the internet) and the development of transistors (1947),
integrated circuits, and microchips, over the last century the math-
ematization of the world became transferable to the material world
of electronics. Thus the equation of “Machinery, materials, and
men” (Frank Lloyd Wright, 1930), which applied to the nineteenth
and twentieth centuries, had to be expanded to “Media, data and
men” (Peter Weibel, 2011) for the twenty-first. After alphabetical
code was supplemented by numerical code, algorithms now
represent a fundamental element of our social order.

	 The	Concept	of	the	Exhibition	–		
	 An	Experiment	in	Education

By means of some 200 artistic and scientific works, the exhibition
displays the world of digital codes and the future forms of life
influenced by them in eight areas: #GenealogyOfCode, #Encoding,
#MachineLearning,	#AlgorithmicGovernance, #Algorithmic-
Economy, #VirtualReality, #Labor&Production, and #Genetic-
Code. The works presented offer you the chance of trying out an
unusual way of engaging with art and defining your own exhibition
visit a bit. Unlike with the conventional reception of analogue
paintings, sculptures, and installations, the horizon of meaning in
Open Codes is only revealed in the process of observers physical
interacting with the works. The participation of the audience is
the moment when the works come into being materially. Participa-
tory and analytical engagement with the works therefore includes
new forms of concentration and meditation as well as divertisse-
ment. The discours of the exhibition is arranged as an architectural
parcours so that you have the opportunity to stroll around auton-
omously among islands of art and knowledge or to be active and
creative at the places called “work stations,” that is, to converse
with other people or to take a break and rest. Because the works
unfold in a particularly fascinating way when observed for a longer
period of time and we want you to explore the works intensively,
we are providing drinks and snacks free of charge. Admission to
the exhibition is free – and you will experience a combination of
a laboratory and a lounge, a learning environment and park oasis.
 It is clear that in this exhibition architectonic concept and
scenography depart radically from the usual museum set-up of

8
Ed

it
or

ia
l

Pe
te

r
We

ib
el

the White Cube. Elements of a studio, a laboratory, and the home
alternate, from a glowing cloud to programmable music machines.
The museum as the Commons: the museum becomes an open
source community in which people collaborate and become more
competent, creative, and knowledgeable together. On the one
hand, the architecture is designed to evoke the atmosphere of a
space for making, doing, and co-working. On the other hand,
the walls are positioned so that they create organic forms. Here
the museum becomes a place of community education where
the acquisition of knowledge is not only rewarding, but is also
rewarded. For the real message of digital transformation is:
The society of tomorrow will (have to) change from a work-based
society to a knowledge-based society. Thus we demand access to
free civic education in the twenty-first century! It is imperative
we have culturally competent citizens in order to defend democracy.
 The ZKM | Museum Communication team has therefore
developed innovative learning concepts with the goal of opening
up the intriguing world of digital coding for people of all ages. The
wide-ranging communications program offers suitable formats
for everyone: small children and (grand)parents, hackers and artists,
computer scientists and coding amateurs. You can explore digital
coding in theory and in practice directly in the exhibition spaces
together with active participants from Karlsruhe and ZKM employ-
ees – at workshops, parties, camps, algoraves, science slams,
experimental tours, or programming courses.

 Peter Weibel

 1 G. W. Leibniz in a letter to
Rudolph August, Duke of Brunswick-
Lüneburg, known as the New Year’s Letter,
January 12, 1697.

 2 English edition: The Order of
Things [1966], Pantheon, New York, 1970.

 3 Ludwig Wittgenstein, Tractatus
logico-philosophicus, 1921, proposition 5.6.

 4 Galileo Galilei, II Saggiatore
(1623), Edition Nazionale, vol. 6, Florence
1896, p. 232.

9

Open Codes 101

 Exhibition Manual

We live in an age where knowledge production, dissemination,
and acquisition are changing on a global scale due to the ongoing
evolution of technologies based on codes. Of central importance
in these debates is the position and purpose of a museum in
this day and age. When you hear the word “museum,” you probably
think of its institutional remit to collect, preserve, and exhibit
historical artifacts and/or artworks. With the exhibition Open Codes
we are proposing a new definition of the museum for the twenty-
first century which breaks with rigid structures and outdated
attitudes: Our goal is to address present-day challenges and needs
and integrate them into the museum. It is an attempt to engage
with today’s realities and point up perspectives and lines of devel-
opment for the future in order to better understand the world
we live in.
 To this end, we have developed a deinstitutionalized format,
a platform of knowledge to which access is always free, and
which resembles closely the actual worlds in which we live and
work. Open Codes is designed as a communal space, as an
environment in which people come together and exchange ideas,
views, information, and experiences. Working and learning are
understood as collaborative processes to create synergies between
different professions and various forms of knowledge and exper-
tise. You, the visitors, are invited to work, produce, and learn
together with others. The design of the exhibition, which is inter-
spersed by park-like oases for relaxing, spaces for focused working,
office spaces, and play areas, aspires to promote competence,
creativity, and acquisition of knowledge. Open Codes is a platform
that facilitates collaboration and co-creation; which invites you
to participate in open exchange within an environment that under-
goes constant change. In the exhibition various approaches are
tried out to test new forms of encounter and critical debate. You
will get to know a very new kind of environment where knowledge
can be accessed; it is a place that continuously changes, re-con-
figures, develops, and evolves.

10
Op

en
 C

od
es

 1
01

Ex
hi

bi
ti

on
 M

an
ua

l
A part of this concept are various tools that you can use to
address the exhibition:

	 Hashtags

The many topics dealt with in the exhibition are grouped in
eight key areas:
#GenealogyOfCode
#Encoding
#MachineLearning
#AlgorithmicGovernance
#Labor&Production
#AlgorithmicEconomy
#VirtualReality
#GeneticCode

A distinguishing feature of the exhibition is that the artworks are
not physically grouped according to themes. The overarching top-
ics are presented as title hashtags together with other hashtags
associated with these topics. This allows you to draw connections
among the different themes. Each artwork is assigned several
hashtags.
 This hashtag system is similar to how hashtags are used in
the media, and thus represents for the open, flowing, and dynamic
connections between themes that is so characteristic of our
networked world.
 The # character was used to denote a number – e.g., # 2
instead of no. 2 – until 2007, when social media users began to
use it as a metadata tag to sort content related to specific key-
words. It is now a dynamic, association-based classification system,
widely used in social media for arranging content, discussions,
and themes in specific categories. Through hashtags being com -
bined with content, images, videos, etc., a non-hierarchical system
results that resembles a cloud: all kinds of content can be associ-
ated with very different keywords, and do not fall under just one
specific and exclusive category.
 The hashtag began its triumphant advance on Twitter ten
years ago, when the platform began to hyperlink all hashtagged
terms in tweets to Twitter search results for the hashtagged word.
When Instagram launched in 2010, the hashtag became the
lingua franca for labeling content on both platforms. Now it can be
found on any online platform, and it influences the way we search
and access information online.

	 The	Brochure

The brochure you are holding in your hands is one of the main
tools for navigating the exhibition. In addition to this text about

11

the exhibition and its components, it contains an introduction by
the exhibition’s curator, Peter Weibel, texts describing the eight
thematic areas, a text on the subject of signal codes and machine
codes by Franz Pichler, and a list of the artworks on show.
 Descriptions of the artworks are displayed next to them in
the exhibition and are also available on the exhibition website.
 If you wish to focus on a particular key theme (title hashtag)
of the exhibition in more detail, you can refer to the accompanying
leaflet with the floorplans of the exhibition. There you will find a
map of each thematic complex as well as an overview of the entire
exhibition. This is the quickest way to see where specific works
can be found in the exhibition.

	 The	App

You can also navigate the exhibition by using the experience_zkm
app, which is available for Android and Apple devices. With this
app you can start a keyword search for one of the title hashtags
and you can hear the particular text as an audio file while the
artworks flagged that are associated with that particular theme
will be highlighted on the exhibition map.
 The app also has a few special features: Throughout the
exhibition you will see markers on the floor. When you approach
one, the app will send you a notification, and if you approach an
inter active artwork, your smartphone will supply instructions of
how you can interact with the work. This feature can be turned off.

	 Info	Points	and	Website

In addition to the Brochure and the App we have put together
an extensive online resource of information which includes
descriptions of the artworks, images, as well as a great deal of
background material – journal and newspaper articles, videos,
further reading –, and other artworks that are only available online.
You can access this information via the main ZKM website
(https://open-codes.zkm.de) from your own devices or at the Info
Points in the gallery space.

	 Work	Stations

All over the exhibition you will find tables and work stations
where you can sit down at any time to read, write something
down, code, or do anything else you feel inspired to do. The work
stations are there to let you give free rein to your imagination so
that you don’t have a long search for somewhere to put down
your ideas. In these areas you can work by yourself or in a group.
Some of the work stations are designed as co-working spaces and
facilitate exchanges between very different people and interests.

12
Op

en
 C

od
es

 1
01

Ex
hi

bi
ti

on
 M

an
ua

l
Other work stations are more quiet environments conducive to
concentration and focused work. To whet your appetite for
learning, to reward your educational competence, non-vending
machines provide drinks and snacks, fruit, etc. absolutely free
of charge.
 The working area in Atrium 8 is of a different kind; it is
designed so that various public events can take place there.
Workshops, lectures, and roundtable discussions will be
held and everyone is invited to participate and get involved.
The important thing about this space is that you can shape its
content. We provide the infrastructure; you fill it with ideas.
 If you would like to hold or organize an event here, just visit
our website to book the spaces at the desired date.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#GenealogyOfCode

 #Binary
#Computing
#NumeralSystem
#Babel

14
#G

en
ea

lo
gy

Of
Co

de
Computation clearly does not begin with personal computers and
their direct ancestors from the twentieth century. To find the
roots of the principles upon which computation of today is based
on one has to go back at least to the Middle Ages.
 Ramon Llull (1232–1316), a Majorcan thinker, sought to
develop a system for solving basic theological and philosophical
questions, a method by means of which he tried to find and explore
all possible combinations of concepts with the help of dynamic
charts. This procedure, his so-called Ars magna [Great Art], is
explained most extensively in his notable work Ars magna (1274–
1308).1 Gottfried Wilhelm Leibniz (1646–1716) conceived his
Dissertatio de arte combinatoria [Dissertation on the Art of Combi-
natorics] (1666), in which he proposes a parallelism between logic
and metaphysics inspired by Llull.2
 In 1679 Leibniz wrote about a #Binary system (“dyadic” or
“binaria arithmetica”) in one of his unpublished letters, which
uses only 0 and 1 as numbers. He was not sure about the practical
use of his invention, but frequently wrote about its possibilities
in various letters to his colleagues. In 1701 he claimed to a French
mathematician that he imagined to foresee, that by this means
and the endless rows there is something to achieve, which wouldn’t
be easy in another way. Leibniz described the first computing
device (#Computing) that works with the binary system as early as
1679. The description remained unpublished and the machine was
not built in his lifetime.3

Two centuries later Charles Babbage was working on his Differ-
ence Engine, followed by the Analytical Engine, neither of which
were constructed entirely under his guidance due to insufficient
funding. The Analytical Engine would have been the first general
purpose computer, but still a mechanical one. “The bounds of
arithmetic were, however, outstepped the moment the idea of
applying the cards had occurred; and the Analytical Engine does
not occupy common ground with mere ‘calculating machines’”4,
wrote Ada Lovelace (1815–1852), acknowledged today as the first
programmer, in her notes on Babbage’s computing automaton.
This early device operated with a decimal #NumeralSystem. Com-
puters nowadays are based only on a binary numeral system, first
used by Leibniz, then reintroduced by George Boole (1815–1864).
 Boole first cast logic into algebraic form in his book The
Mathematical Analysis of Logic (1847), introducing the Boolean
algebra.5 Boole’s binary system is based on the three most basic
operations used as logical operations: AND, OR, and NOT.6
 This system was not put into operation until “Claude
Shannon, in 1937, proved in what is probably the most conse-
quential M.A. thesis ever written, that simple telegraph switching
relays can implement, by means of their different interconnec-
tions, the whole Boolean algebra.”7

15

Also in 1937, Alan Turing (1912–1954) built a Boolean logic multi-
plier and proposed a theory of computability in his essay on
the “Entscheidungsproblem” [decision problem].8 The paper had
already been written the previous year while he was working on
his well-known Turing machine, which was not a physically exist-
ing computer, but a mathematical model of computation. With
his multiplier based on Boolean logic, Turing tried “to embody the
logical design of a Turing machine in a network of relay-operated
switches”,9 which served as a basis for creating the multiplier.

Soon after, from the 1940s with the appearance of electronically
powered computers, different programming languages were
designed and assembler (asm) was one of the first. This low-level
programming language can be converted into executable machine
code in one step, as there is a very strong correspondence between
the language and the machine code. From the 1950s onward
high-level programming languages started to replace their “low”
antecedents. Dozens of programming languages have been written
and developed, starting with ALGOL (ALGOrithmic Language),
then Fortran, Pascal, C++, Java, and Python, to name just a few.
“This postmodern Tower of Babel reaches from simple operation
codes whose linguistic extension is still hardware configuration,
passing through an assembler whose extension is this very opcode,
up to high-level programming languages whose extension is that
very assembler.”10 (#Babel)
 All these languages are based on a binary number system,
a sequence of “ons” and “offs” allowing electricity in the circuit
to flow or stop. Despite the simplicity of their basic components,
programming languages can describe exceedingly complex
operations. The computing devices mentioned above all run with
binary code, except Babbage’s machines, which used the decimal
system. Due to Shannon’s work and the implementation of tran-
sistors binary systems became ubiquitous in computing.

In addition to algorithms (see #Algorithm in key area #Encoding)
and calcula tions anything decodable can be described by binary
code. Perhaps the best-known example is ASCII (American Stan-
dard Code for Information Interchange), the characters displayed
on a computer screen, which was developed from telegraph
code beginning in 1960.

The capacities of current computers may not be sufficient for the
amount and complexity of computing in the future. The devel-
opment of modern computers has been very fast, which is even
more striking when compared to the improved performance of
cars. If cars made in 1971 had improved at the same rate as com-
puter chips, then by 2015 new models would have had top speeds
of about 680 million kilometers per hour.11

16
#G

en
ea

lo
gy

Of
Co

de
Quantum computing could be the answer to the recent and seem-
ingly inevitable expansion.
 In a quantum computer logical operations are performed on
an atomic level. Atoms register more than bits, they are able to
register 0 and 1 at the same time, and thus quantum bits or qubits
are more efficient than classical bits because they can perform
two computations simultaneously.12
 “How long can computation continue in the universe?
Current observational evidence suggests that the universe will
expand forever. As it expands, the number of ops performed
and the number of bits available within the horizon will continue
to grow.”13]

 1 Raimundus Llullus, Opera,
2 vols., Frommann-Holzboog, Stuttgart-
Bad Cannstatt, 1996, S. 228–663. See
also Anthony Bonner, The Art and Logic of
Ramon Llull: A User’s Guide, Brill, Leiden,
Boston, 2007.

 2 See Ana H. Maróstica, “Ars
Combinatoria and Time: Llull, Leibniz
and Peirce,” in: Studia Lulliana, vol. 32,
1992, pp. 105–134, here p. 111.

 3 See Hermann J. Greve,
“Entdeckung der binären Welt,” in: Herrn
von Leibniz’ Rechnung mit Null und
Eins, Siemens Aktiengesellschaft, Berlin,
Munich, 1966, pp. 21–31.

 4 L. F. Menabrea, Sketch of
the Analytical Engine Invented by Charles
Babbage, translated from the French and
supplemented with notes upon the memoir
by Ada Lovelace, printed by Richard and
John E. Taylor, London, 1843, p. 696f.

 5 See George Boole, The
Mathema tical Analysis of Logic: Being an
Essay Towards a Calculus of Deductive
Reasoning, Macmillan, Cambridge, 1847.

 6 See Paul J. Nahin, The Logician
and the Engineer: How George Boole and
Claude Shannon Created the Information
Age, Princeton University Press, Princeton
(NJ), Oxford, 2013.

 7 Friedrich Kittler, “There Is No
Software,” in: Stanford Literature Review,
vol. 9, no. 1 Spring 1992, pp. 81–90, here
p. 88.

 8 See Alan Turing, “On Com-
putable Numbers, with an Application
to the Entscheidungsproblem,” in: Pro-
ceedings of the London Mathematical
Society, ser. 2, vol. 42, no. 1, January 1937,
pp. 230–265.

 9 Andrew Hodges, Alan Turing:
The Enigma, Princeton University Press,
Princeton (NJ), Oxford, 2014, p. 177.

 10 Kittler 1992, p. 82.

 11 See Tim Cross: “Vanishing
point: The rise of the invisible computer,”
in: The Guardian, 01/26/2017, available
online at: https://www.theguardian.com/
technology/2017/jan/26/vanishing-point-
rise-invisible-computer, accessed
09/13/2017.

 12 Seth Lloyd, Programming the
Universe: A Quantum Computer Scientist
Takes on the Cosmos, Vintage Books, New
York, 2007, pp. 136–139.

 13 Ibid., p. 206.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#Encoding

 #MorseCode
#ProgrammingSound
#Algorithm
#Software
#Hardware
#Interface
#Decoding

18
#E

nc
od

in
g

From #GeneticCode (see correlating key area) to music notation,
from communication systems for sensory impairments, such as
sign language, to #MorseCode, from safety codes and standards to
social rules of conduct, the term “code” may outwardly designate
recognizable elements and familiar processes, but what does it
mean in terms of #Programming (see key area #Labor&Production)
and computing?
 The Dictionary of Computing defines code as “a rule for
transforming a message from one symbolic form (the source
alphabet) into another (the target alphabet).”1 Therefore, code
could be seen as a set of instructions “that changes the input from
one state to another, and as a consequence the code performs
work.”2 This way of performing designates precisely one of its
main characteristics: code is at the same time legible and execut-
able; it is simultaneously a medium and an instruction. This essen-
tial virtue makes code different from common languages, which
can be read or written but do not cause any changes by doing this
per se. In that sense, computer code “is the first language that
actually does what it says – it is a machine for converting meaning
into action.”3

Another crucial aspect of computer code is its deceptive invisi-
bility. Code is generally hidden; it lacks materiality in itself
and remains mostly unseen inside the machine, but it generates
visible, concrete, and tangible effects in the world. Taking a
programmed sound work as an example, the different sounds or
compositions would be the output, in other words, the result
of one or many lines of code (#ProgrammingSound).

Similarly to code, the word #Algorithm is often associated with
computing and programming, although the definition of algorithm,
being a sequence of actions to be performed, could be applied
for various procedures. An algorithm is a set of rules that specify
how to solve a problem or perform a task. In that sense, a recipe
or a manual of production could be understood as an algorithm,
too. In computing, these sets of rules or steps are established
in order to process data and, as we have already seen, produce
an output.
 Algorithms and code are also the invisible part, commonly
summarized under the term #Software, which is “a generic term
for those components of a computer system that are intangible
rather than physical.”4 By contrast, #Hardware is the compilation
of physical components that form a computer system like, for
example, the mainboard. In order that software and hardware can
exchange information, a third element is needed, the #Interface,
which also can be the link between software, hardware, and
humans. To understand how this exchange works, we only have to
think about a “power” button: the button is, namely, the interface

19

between you and the electrical wiring behind the machine. You
press it and the machine turns on and off.

Even in common, ordinary applications such as sending an SMS,
code executes an extremely high number of algorithmic opera-
tions. In computers, #Encoding is the process in which a sequence
of characters is transformed into a specific format for efficient
transmission or storage. In order to convert an encoded format
back into the original sequence of characters, the opposite process,
called #Decoding, would be necessary. Both processes are
commonly used in data communications, networking, and storage,
and especially with regard to wireless communications systems.
By running these and other processes, code nowadays has the
capacity to process and control many different operations within
seconds, shaping and creating new horizons for social, economic,
or cultural activity.

 1 Andrew Butterfield and Gerard
Ekembe Ngondi, A Dictionary of Computer
Science, 7 ed., Oxford University Press,
Oxford, 2016, p. 93.

 2 Rob Kitchin and Martin Dodge,
Code/Space: Software and Everyday Life,
The MIT Press, Cambridge (MA), London,
2011, p. 25.

 3 Alexander R. Galloway,
Protocol: How Control Exists after Decent-
ralization, The MIT Press, Cambridge (MA),
London, 2004, p.166.

 4 Susan M. Hockey, A Dictionary
of Computing, 2 ed., Oxford University
Press, Oxford, 1986, p. 352.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#MachineLearning

 #ArtificialIntelligence
#Cybernetics
#PatternRecognition
#AutonomousSystems
#SelfDrivingCars
#Drones
#Robots

21

In computer science #ArtificialIntelligence (AI) determines
the operations of intelligent agents using forms of mechanical
or “formal” reasoning. AI was founded on the idea that a machine
can simulate human intelligence. Alan Turing’s theory of com-
putation suggested that it was possible to represent logical opera
tions by modifying simple symbols such as 0 and 1. Turing
assumed that reasoning can be formalized as distinctive sequences
of mechanical operations based on cause and effect – in other
words, discrete sequences of logical steps based on a set of rules
(#Algorithm, see key area #Encoding).1 What came to be known
as the classical symbolic approach to AI considers machine cog -
nition as rule-governed manipulation of formal symbols with a
centralized control mechanism. It was the attempt to code knowl-
edge about the world in formal mathematical language. This
approach was successful for so-called expert systems, which were
able to carry out complex tasks, such as medical diagnosis, or
planning and configuration at the level of human experts. How-
ever, they proved difficult to program since one simple error some-
times caused the whole system to fail. But most importantly the
systems were not able to inherently learn.2 By 1980 the approach
was no longer pursued as it became clear that a mere simulation
of thought does not amount to real understanding; therefore, that
syntactic manipulation of symbols does not suffice for cognition.3

A more flexible and adaptive approach to machine cognition came
from the field of neuroscience and #Cybernetics, where artificial
intelligence was not treated in terms of rules and representations
but as dynamic systems. Warren S. McCulloch and Walter Pitts’
ground-breaking research was the first work that treated the brain
as a computational apparatus.4 Together with Donald O. Hebb’s
work on associative learning deriving from the firing of nodes that
produce synaptic interrelations,5 Frank Rosenblatt developed the
foundation for machine learning.6 #MachineLearning is a field of
AI that explores forms of computation which allow programs to
change and adjust its internal parameters automatically, that is,
without hand engineering the algorithms, in order to process data.
The algorithmic structure is constituted as an artificial neural
network, whose reasoning is executed by thousands of neurons,
arranged into hundreds of intricately interconnected layers break-
ing up causal relations. Neural computation is based on modelling
an adaptive system that evolves through the capturing of envi-
ronmental data, which is fed back into the system.7 Crucially, the
networks’ output constitutes an approximation, a statistical like-
lihood for the most probable outcome.

Since 2006, machine learning has made huge leaps forward as a
consequence of a steady increase in computational power coupled
with the vast expansion of data capturing mechanisms and the

22
#M

ac
hi

ne
Le

ar
ni

ng

 1 See Alan Turing, “On Compu-
table Numbers, with an Application to the
Entscheidungsproblem,” in: Proceedings
of the London Mathematical Society, ser. 2,
vol. 42, no. 1, January 1937, pp. 230–265.

 2 See David Davenport, “The
Two (Computational) Faces of AI,” in:
Philosophy and Theory of Artificial Intelligen-
ce, ed. Vincent C. Müller, Studies in Applied
Philosophy, Epistemology and Rational
Ethics vol. 5, Springer, Heidelberg, 2013,
pp. 43–58, here p. 44.

 3 See John R. Searle, “Minds,
Brains, and Programs,” in: Behavioral and
Brain Sciences, vol. 3, no. 3, September
1980, pp. 417–424.

 4 Warren S. McCulloch and
Walter Pitts, “A Logical Calculus of the
Ideas Immanent in Nervous Activity,” in:
Bulletin of Mathematical Biophysics, vol. 5,
no. 4, December 1943, pp. 115–133.

 5 Donald O. Hebb, The Organi-
zation of Behavior: A Neuropsychological
Theory, Wiley, New York, Chapman and
Hall, London, 1949.

 6 Frank Rosenblatt, “The Percep-
tron: A Probabilistic Model for Information
Storage and Organization in the Brain,”
in: Psychological Review, vol. 65, no. 6,
1958, pp. 386–408.

 7 See Yann LeCun, Yoshua
Bengio, and Geoffrey Hinton, “Deep
Learning,” in: Nature, vol. 521, May 2015,
pp. 436–444.

 8 See Geoffrey E. Hinton, Simon
Osindero, and Yee-Whye Teh, “A Fast
Learning Algorithm for Deep Belief Nets,”
in: Neural Computation, vol. 18, no. 7, July
2006, pp. 1527–1554.

enlargement of the physical IT infrastructure.8 In its practical
application machine learning algorithms are heavily employed for
#PatternRecognition; visual object recognition and object
detection particularly relevant for #AutonomousSystems such as
#SelfDrivingCars, #Drones, and #Robots. In essence, machine
learning reconstitutes what thinking means and raises many
ethical and legal questions with regard to automated decision-
making, machine bias, liability, and accountability.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#AlgorithmicGovernance

 #BigData
#QuantifiedSelf

24
#A

lg
or

it
hm

ic
Go

ve
rn

an
ce

Governance refers to a process of governing – the way in which
norms, laws, and actions are structured, sustained, and held
accountable, whether undertaken by the government, society, or
the market economy. Essentially, governance involves the practice
in which societies are organized, the logic or language of regu-
lation. Hence governance also implies a way of exercising power
over someone or something.1 #AlgorithmicGovernance explores
the formal and informal rules of organizing the living through
#Algorithms (see key area #Encoding). Algorithmic governance
refers to a form of soft power that interrupts habits and reorients
action potentials. It is a producing force that generates the par-
ticular behavior that comes to the surface next; a force that acts
before the behavior takes shape.2 As such algorithmic governance
offers a radically different form of managing all aspects of human
life, be it socially, politically, economically, or environmentally.
It raises immanent questions of how algorithmic processing
should be regulated and legislated.

Underlying new forms of governance is the way in which data is
gathered and analyzed in order to ascribe value. The last decade
has seen an explosion in the amount of data that is being cap-
tured and processed in real time. Our environment is increasingly
encoded (see key area #Encoding), rendered machine-readable,
uniquely indexical, and identifiable by the vast assemblage of
connected devices and sensors. Daily life is becoming more and
more mediated by digital devices and facilitated by computational
infrastructure. The #BigData undertaking strives at capturing
society as a whole, the entirety of the population and its activi-
ties.3 The endeavor of data collection and the quantification of the
self (#QuantifiedSelf) is underpinned by the intention to produce
sophisticated statistical models that characterize, simulate, and
predict human life. The key to assembling all this data is the
way in which information is correlated – the processing of data
through various kinds of statistical analysis and #Machine-
 Learning algorithms – which detect patterns and connections
between pieces of data. Correlations of data become sources of
knowledge and/or information.

In consequence, governance seems to have turned into a struggle
of how data is evaluated and by whom. Essentially, what the
correlation of data allows for is the assemblage of profiles for
individuals and groups of people to determine so-called normal
behavior and distinguish the abnormal. Individuals are thereby
turned into “dividuals,” numerical bodies of code comprised of
data assemblages.4 On the basis of these profiles governments
and businesses implement their agendas. Whereas the latter
adopt strategies to realize capital accumulation that will produce
significant profits, the concern of the former is state security.

25

With increasingly invasive means of profiling, companies seek
on the one hand to personalize consumer behavior through
micro marketing of products. On the other side stands the state
which uses new technology to gather information that is supposed
to prevent crime but at the same time can attempt to influence
how the electorate votes through microtargeting. In both cases
powerful algorithms in combi nation with predictive analytics are
employed to conditions of life’s nextness. Control is exercised
subtly, making it seem as if the dividual is acting autonomously,
yet it lacks the ability to make decisions of its own volition.

 1 See Isabell Lorey, States of
Insecurity: Government of the Precarious,
Verso, London, New York, 2015, pp. 23ff.

 2 See Luciana Parisi, Contagious
Architecture: Computation, Aesthetics,
and Space, The MIT Press, Cambridge
(MA), London, 2013, pp. 169ff.

 3 See Rob Kitchin, The
Data Revolution: Big Data, Open Data,
Data Infrastructures and Their Conse-
quences, Sage Publications, Los Angeles,
London, 2014, pp. 67ff.

 4 Gilles Deleuze, “Postscript
on the Societies of Control,” in: October,
vol. 59, Winter 1992, pp. 3–7.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#Labor&Production

 #Industry4.0

#InternetOfThings
#Programming
#SmartFactories
#Automation
#Work4.0

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

27

The desire for on demand goods and services, customized to one’s
personal tastes and available 24–7, is steadily increasing. It is a
phenomenon of the digital economy, a business model that cuts
across sectors – including manufacturing, services, transportation,
and telecommunications – which is heavily reliant on information
technology.1 This model is reshaping the organization and manage-
ment of the entire value chain of consumer goods and putting
in place a new infrastructure. What makes this business model
possible is the real-time networking of products, processes, and
infrastructure, as well as related customer services via the Internet.
This enables rigid value chains to be transformed into highly flexible
value networks.

The approach has been termed #Industry4.0 and is deemed
to constitute a fourth industrial revolution. It is characterized by
its interoperable design where machines, devices, sensors, and
people are connected and can exchange relevant information
in real time over the #InternetOfThings (IOT). This transparency
enables dynamic, efficient production processes that can be
optimized on the basis of different criteria such as cost, availabil-
ity, and resource consumption. Software and machines operate
autonomously and do not require complicated #Programming to
meet new requirements, which makes it possible to react fast to
individual customer requests. Individual parts of the chain “know”
what they are, where they belong, how they need to proceed,
and can interact with the production plant. The plant then decides
by itself what should be done in accordance with priority and
time frame. In these modular structured #SmartFactories the
implemented software recognizes defects or mistakes at an early
stage and is able to counteract them.2

 Industry 4.0 is as yet a developing process. To work suc-
cess fully, it will require a great deal of standardization and unifor-
mity on an international scale. New forms of cooperation between
companies across sectors both nationally and globally need to
be created. The smart factory’s highly flexible value networks call
for the harmonization of #Interfaces (see key area #Encoding);
that is, a reference architecture, a set of uniform definitions and
methods. It necessitates a common structure and language for
standardized description and specification of systems. Industry
4.0 brings many challenges to IT and data security, which can
compromise the integrity of production processes. Similarly, it
raises legal issues that need regulation, concerning data protec-
tion (corporate, employee, and consumer) and liability for auto-
mated systems.3

However, the greatest transformation that the new business models
bring with them is the way in which labor is organized. Routine
and low-skill jobs are increasingly threatened by #Automation, for

28
#L

ab
or

&P
ro

du
ct

io
n

they are being taken on by intelligent machines and #Robots (see
key area #MachineLearning). Employees are obliged to acquire
a much broader range of skills which allow them to take action
and make decisions that #Algorithms (see key area #Encoding)
cannot. Considering these changing dynamics of labor, employees
will need to be trained and qualified for new roles, be more flexible
and mobile. This transformation has been termed #Work4.0.4
In this economy knowledge is the key resource in which every-
thing is geared towards innovation. The changeover from a labor-
based society to a knowledge society is imminent. Fewer people
will be top wage earners, fewer people will have less (routine)
work to do, and fewer people will do more (highly technical and
highly qualified) work. Knowledge and know-how will be the
new gold, the new oil. At one end of the spectrum, the workplace
increasingly adapts to more flexible and dynamic structures that
cater to individual needs in order to harness creativity. Yet only
the top-end workers receive these benefits as well as profit from
healthy and family-friendly working arrangements. The other
end of the spectrum may resemble the manual labor factories for
software engineering similar to the Silicon Valley accelerators.

 1 See Nick Srnicek, Platform
Capitalism, Theory Redux series, Polity
Press, Cambridge (UK), 2017, pp. 4–5.

 2 See Bundesministerium für
Wirtschaft und Energie, Industrie 4.0 und
Digitale Wirtschaft: Impulse für Wachstum,
Beschäftigung und Innovation, Bundes-
ministerium für Wirtschaft und Energie,
Berlin, 2015.

 3 See Bundesministerium
für Bildung und Forschung, Zukunftsbild
Industrie 4.0, Bundesministerium für
Bildung und Forschung, Berlin, 2015.

 4 See Ned Rossiter, Software,
Infrastructure, Labor: A Media Theory
of Logistical Nightmares, Routledge,
New York, 2016, p. 109.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#AlgorithmicEconomy

 #HighFrequencyTrading
#Bitcoin
#Cryptocurrencies
#Decrypt
#Blockchain

30
#A

lg
or

it
hm

ic
Ec

on
om

y
In a world where everything is becoming digital (our way of com-
munication, our advertising, our leisure and workplaces), it was
only a matter of time before money could be generated in a digital
way. Banks and markets have been operating for decades using
computerized algorithms and many customers have had digital
access to their money for some time now. However, the matter at
hand – #AlgorithmicEconomy – is more extensive and complex.
Which impacts has the implementation of code had in our global-
ized economy? Which systems have appeared – or will appear
in the future?

One of the first concepts that emerges when talking about the
combination of economics, mathematics, and computer science
is algorithmic trading, a practice widely used by investment banks
and pension funds that utilize automated preprogrammed instruc-
tions to make decisions and execute transactions in the financial
markets. This means that nowadays #Algorithms (see key area
#Encoding) drive a great number of stock trades. Many systems
of these automated activities fall into the category of #High-
FrequencyTrading (HFT), which is characterized by such high
speeds that a human could never carry them out in the same time
nor even close to it.
 As an alternative to this hegemonic system and its financial-
ization, a new digital currency called #Bitcoin was released online
in 2009, followed by many other digital cash currencies, such
as Ethereum or Litecoin. But what makes #Cryptocurrencies
different from traditional currencies? As its name implies, they
are based on a cryptographic system,1 which means that the code
behind them is elaborated on a system that keeps information
secret. Only the people – or more precisely, the programs – that
know how to solve it, how to #Decrypt it, will have access to
this information. Cryptocurrencies are also immaterial and decen-
tra lized. Unlike centralized banking, where governments control
the currency values through the process of printing money,
governments have no control over cryptocurrencies: their value
circulates on the Internet without the regulating involvement of
any intermediaries.

To understand the correlations, one has to look at the #Block-
chain, the system behind cryptocurrencies. Blockchain is an
open database that, in this case, stores a history of financial
transactions. Single blocks contain various transactions, each of
which is linked to a previous record in the chain. When someone
purchases something with Bitcoins, a request in the form of a
cryptographic puzzle is sent to and received by all the computers –
known as miners – on the Bitcoin peer-to-peer network. When
a miner solves a puzzle, a new block is added to the chain and it
is rewarded with some Bitcoins. But earning Bitcoins is not the

31

only point of mining: the puzzles are so complex that every new
block makes the previous ones and the whole chain a safer
environment. Hacking the block-chain would require immense
speed to alter just one transaction. With many miners adding
blocks continuously, a vast amount of computing power would
be needed.
 Like other disruptive technologies born in the digital age,
crypto currencies are challenging the way things have been done
in economics so far, foreseeing a future in which middlemen
would become obsolete. In a world run by blockchain technolo-
gies, new tools for business strategies and managing transfers
would be developed, shifting “the control of money and infor-
mation away from the powerful elites […] to the people to whom
it belongs.”2 While many people argue that these models will
dis rupt the centralized economic and political establishments,
others say that they will severely impact our job market and only
benefit those in the upper echelons of the workforce. It is not
possible to predict the future, but to understand the world we live
in and the economy we are building, we necessarily need to
recognize and analyze the power of algorithms and computation.

 1 The term cryptography deri-
ves from Greek κρυπτός, kryptós, which
means “hidden” or “secret,” and γράφειν,
graphein, Greek for “writing.” See Henry
George Liddell and Robert Scott, A
Greek–English Lexicon, Oxford University
Press, 1984.

 2 Paul Vigna and Michael
J. Casey, The Age of Cryptocurrency: How
Bitcoin and Blockchain are Challenging
the Global Economic Order, St. Martin’s
Press, New York, 2015, p. 6.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#VirtualReality

 #HMD
#ComputerSimulatedEnvironments
#AugmentedReality
#ComputerGeneratedDesign
#Escapism

33

To understand the significance of virtual and #VirtualReality in
the present context let us take a closer look at the rise of current
usages of these terms. Virtual reality (VR) is understood as a
technical term, as a medium that reproduces spatial experiences
for its viewers – experiences of and in spaces that do not physically
exist and cannot be explored by touch, for example, especially
when other visual stimuli are blocked out (for example, by head-
mounted displays, #HMD). In art, since ca. 1920, bodies that
only appear to exist are referred to as virtual (e.g., Naum Gabo,
Konstruktion, 1921). A rotating wire driven by an electric motor, for
example, produces what looks like a three-dimensional figure on
a disk. In the 1920s, experimental psychology and gestalt theory
investigated this phenomenon in depth, for example, the stereo-
kinetic effect. Kinetics and Op Art are its products. Since the term
has been used in the context of computer technology the meaning
relating to #ComputerSimulatedEnvironments has been added to
most dictionary definitions as follows: simulated on a computer or
computer network, or existing within a virtual reality.1

 Thus we can conclude that “the virtual is a substitute –
‘acting without agency of matter’ – an immaterial proxy for the
material. The term becomes a key marker of a secondary order in
the relationship between the real and its copy, the original and
its reproduction, the image and its likeness.”2

 In philosophy Henri Bergson, Gilles Deleuze, Félix Guattari,
and Pierre Lévy all developed various concepts of the virtual. Berg-
son describes the immateriality of memory as virtual.3 For Deleuze
virtual is not opposed to real, but to actual – in this understanding
virtual is a mode of reality.4 Guattari describes virtual as one of
“four ontological functors”5 – the virtual, the actual, the real, and
the possible.
 The term “virtual reality” is relatively recent and was
probably coined by Antonin Artaud in his book The Theatre and
Its Double, first published in French in 1938.6 Our current under-
standing of VR does not coincide with Artaud’s usage of the
term; the meaning has shifted over the last decades, and now the
term is predominantly used for computer-aided interactive and
immersive environments, together with #AugmentedReality, that
are accessed via screened images and in many cases additional
devices (such as HMDs).
 Artists and engineers began to experiment with the medium
in the 1980s (Myron W. Krueger, Artificial Reality, 1983) and
contributed to its development of #ComputerGeneratedDesign.
Especially in the 1990s applications and artistic experiments using
VR proliferated and resulted in artworks. Although at that time
the technology was not sufficiently developed for wider usage,
with the wider availability of the hardware and various software for
it, in the last few years more and more artists have started to work
with VR as a medium.

34
#V

ir
tu

al
Re

al
it

y
The medium offers complete visual immersion; it not only opens
a window, as framed images do, as Leon Battista Alberti claims
in his treatise On Painting (1435). The Art of Immersion, however,
actually pulls the observer into the image and not only opens a
window as painting and framed art works do. VR is a gateway
through which viewers in the real world enter and leave the virtual
world. VR literally opens a door into another reality.
 In the gaming industry and in medicine the technology is
already widespread. Virtual models help surgeons, for example,
to identify the safest and most efficient way to locate tumors
and place surgical incisions. Psychologists and other medical
professionals are using VR to enhance traditional therapy methods
and find effective solutions for treatment of posttraumatic stress
disorder (PTSD), anxiety, and social disorders. Real estate busi-
nesses and architects accompany their possible tenants or building
contractors on walk-throughs of as yet non existent buildings.
 VR technologies are becoming ubiquitous, not only because
of the supreme #Escapism the medium offers, but also because
of its practical and commercial potentials.

 1 See Webster’s Third New
International Dictionary, unabridged edition,
Merriam Webster, 1993.

 2 Anne Friedberg, The Virtual
Window: From Alberti to Microsoft, The
MIT Press, Cambridge (MA), London, 2006.
p. 8.

 3 See Henri Bergson, Materie
und Gedächtnis. Eine Abhandlung über
die Beziehung zwischen Körper und Geist,
introduction by Erik Oger, trans. Julius
Frankenberger, Verlag Felix Meiner, Ham-
burg, 1991, p. 127.

 4 Manuel DeLanda provides a
comprehensive explanation of the process
that Deleuze calls counter-actualization
(moving from the actual to the virtual);
see Manuel DeLanda, Intensive Science
and Virtual Philosophy, Continuum, London,
2002.

 5 Felix Guattari, Chaosmosis:
An Ethico-aesthetic Paradigm, trans. Paul
Bains and Julian Pefanis, Indiana University
Press, Bloomington, 1995.

 6 See Antonin Artaud, The Thea-
ter and Its Double, trans. Mary C. Richards,
Grove Press, New York, 1958, p. 49.

function init() {
 renderer = new THREE.WebGLRenderer();
 renderer.domElement.id = "canvas";
 renderer.setClearColor(0xffffff);
 renderer.setPixelRatio(window.devicePixelRatio);
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);
 document.addEventListener("keypress", onDocumentKeyPress, false);
 scene = new THREE.Scene();
 scene.add(new THREE.AmbientLight(0xffffff));

 camera = new THREE.OrthographicCamera(-window.innerWidth / 2, window.innerWidth / 2, window.innerHeight / 2, -window.innerHeight / 2, 1, 2000);
 camera.position.set(0, 0, 1000);
 camera.lookAt(v3());

 if (display == "main") {
 scene.add(mainObject(1, -window.innerWidth / 4));
 scene.add(ABCMatrix(abcms).translateX(window.innerWidth / 4));
 setIntialMatrix(alphabet, "matrix");
 }

 else if (display == "mobile") {
 scene.add(mainObject());
 let camerabox = new THREE.Object3D();
 camerabox.add(camera);
 camerabox.name = "camerabox";
 scene.add(camerabox);
 control = new THREE.DeviceOrientationControls(scene.getObjectByName("camerabox"));
 }

 else if (display == "history") {
 scene.add(ABCMatrix(hms));
 setIntialMatrix(lH, "history");
 }

 window.addEventListener("resize", function() {
 let oCamera = scene.getObjectByName("camerabox").children[0];
 oCamera.right = window.innerWidth / 2;
 oCamera.left = -window.innerWidth / 2;
 oCamera.top = window.innerHeight / 2;
 oCamera.bottom = -window.innerHeight / 2;
 oCamera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth, window.innerHeight);
 }, false);
}
// End of init() function

function onDocumentKeyPress(event) {
 let ch = String.fromCharCode(event.which);
 if (alphabet.indexOf(ch) + 1) {
 if (display == "main") rotateTo(ch, next_letter_speed);
 if (display == "history") updateHMatrix(ch, 0);
 }
}

function ABCMatrix(config) {
 let matrix = new THREE.Object3D();
 matrix.name = config.name;
 for(i = config.r; i > 0; i--) {
 for(j = 0; j < config.c; j++) {
 let element = new THREE.Object3D();
 element.add(elementMesh.clone());
 element.visible = false;
 element.scale.multiplyScalar(config.scale);
 element.translateY((i - (config.r + 1) / 2) * config.roff);
 element.translateX((j - (config.c - 1) / 2) * config.coff);
 element.tween = new TWEEN.Tween();
 matrix.add(element);
 if(matrix.children.length >= config.items) break;
 }
 if(matrix.children.length >= config.items) break;
 }
 return matrix;
}

function mainObject(scale = 1, Xpos = 0, Ypos = 0, name = "main") {
 let container = new THREE.Object3D();
 container.name = name;
 container.add(elementMesh.clone());
 container.scale.copy(v3(scale, scale, scale));
 container.translateX(Xpos).translateY(Ypos);
 container.length = container.children[0].length;
 container.tween = new TWEEN.Tween();
 return container;
}

function rotateTo(i = "a", time = 1000, start = true , o = scene.getObjectByName("main")) {
 if (i == " ") o.visible = false;
 else {
 o.tween.stop();
 let target = targetRotation(i).normalize();
 let start = o.quaternion.clone().normalize();
 let slerpI = {t: 0};
 o.tween = new TWEEN.Tween(slerpI).to({t: 1}, time)
 .interpolation(TWEEN.Interpolation.Bezier)
 .onUpdate(function(){
 THREE.Quaternion.slerp(start, target, o.quaternion, Math.round(1000 * slerpI.t) / 1000);
 });
 if(start) o.tween.start();
 }
}

function targetRotation(l) {
 let e = new THREE.Euler(D2r(abcP[l].x), D2r(abcP[l].y), D2r(abcP[l].z), "XYZ");
 return new THREE.Quaternion().setFromEuler(e);
}

function updateLetter(letter) {
 if (alphabet.indexOf(letter) >= 0) {
 let matrixObject = scene.getObjectByName("matrix");
 let lPos = letter.charCodeAt(0) - "a".charCodeAt(0);
 blink(matrixObject.children[lPos], 50, 500);
 }
}

function setIntialMatrix(str = alphabet, name = "matrix", time = 500){
 var object = scene.getObjectByName(name);
 for(k = 0; k < Math.min(str.length, object.children.length); k++) {
 rotateTo(str.charAt(k), time, true, object.children[k]);
 if(str.charAt(k) == " ") object.children[k].visible = false;
 else object.children[k].visible = true;
 }
}

function updateHMatrix(letter, time = 500, name = "history", config = hms) {
 let object = scene.getObjectByName(name);
 if (lH.length >= config.r * config.c) lH = lH.substring(0, lH.length - 1);
 lH = letter + lH;
 setIntialMatrix(lH, "history", time);
}

#GeneticCode

 #DNA
#SourceCode
#Bioengineering
#Phenotype
#DNADataStorage
#Genotype

36
#G

en
et

ic
Co

de
#DNA (deoxyribonucleic acid) is known to contain the #SourceCode.
#GeneticCode is the set of rules by which information encoded
within genetic material (DNA or mRNA sequences) is translated
into proteins by living cells.
 The description of genetic code began in the 1950s. By 1953
it was clear that the genetic information in DNA, a macromolecule
forming a double helix (James Watson, Francis Crick), is made
up of four chemical bases: adenine (A), guanine (G), cytosine (C),
and thymine (T). At this time the central dogma of molecular
biology became that DNA contains the code for the construction
of proteins that catalytically and structurally “execute” life.1

 The metaphors and phrasing used in molecular biology were
strongly influenced by #Cybernetics (see key area #Machine-
Learning) and information theory that became influential in the
late 1940s and 1950s, exactly when genetics started to spread
its wings.2

 DNA and RNA were called “informational molecules” or
“tapes” governed by the rules of information processing.3 Genetic
code was also compared to a computer program, for example,
“organs, cells and molecules are united by a communication
network.”4

To decipher the code of the biological “Book of Life,” was a central
issue in molecular biology, and researchers were racing to crack
it. The Human Genome Project (HGP, 1990–2003) was an inter-
national scientific endeavor with the goal of determining human
#Genotype 5, the sequence of nucleotide base pairs that make
up human DNA. The private research project of Craig Venter
(Celera Corporation) has worked with automated DNA sequencing
since 1998.
 The developments in molecular biology facilitated new fields
of engineering. #Bioengineering “is the manipulation of an organ-
ism to produce non-native molecules (such as drugs or proteins).”6
Recombinant DNA technology, a method originally invented by
Stanley N. Cohen and Herbert Boyer in the 1970s to insert human
DNA into bacteria to produce a recombinant version of insulin for
the treatment of diabetes, is the key for this discipline. The latest
developments in the field are genome editing methods; CRISPR/
Cas9 recently got the most publicity. Genome editing allows
researchers to modify any genomes, including human, with wide
application possibilities.7 The method, just like genetic engineering
in general, raises ethical questions.
 It has been recently discovered that DNA molecules can
store any data (#DNADataStorage). Textual and visual information,
even moving images, can be converted to binary then to genetic
code8, which has allowed researchers to encode in a decodable
way, for example, a series of frames from Eadweard Muybridge’s
Human and Animal Locomotion in bacterial DNA.

37
 1 Adrian Mackenzie and Theo
Vurdubakis, “Codes and Codings in Crisis:
Signification, Performativity and Excess,”
in: Theory, Culture & Society, vol. 28, no. 6,
2011, pp. 3–23, here p. 7.

 2 See Lily E. Kay, Who Wrote
the Book of Life: A History of Genetic Code,
Stanford University Press, Stanford, 2000,
esp. pp. 73–127.

 3 See Carl R. Woese, The Ge-
netic Code: The Molecular Basis for Genetic
Expression, Harper & Row, New York, 1967,
pp. 253–254.

 4 François Jacob, The Logic of
Life: A History of Heredity [1970], trans.
Betty E. Spillmann, Pantheon Books, New
York, 1973.

 5 #Genotype defines the genes
within the organism, while #Phenotype
describes its physical appearance.

 6 Brandon Adkins, A Future
Guide to Bioengineering, Kindle e-book,
Amazon Distribution, Leipzig, 2016, p. 5.

 7 See Alex Reis, “CRISPR/Cas9
and Targeted Genome Editing: A New Era
in Molecular Biology,” in: NEB expressions,
no. 1, 2014, available online at: https://
www.neb.com/tools-and-resources/feature-
articles/crispr-cas9-and-targeted-genome-
editing-a-new-era-in-molecular-biology,
accessed 09/13/2017.

 8 See Andy Extance, “How
DNA Could Store All the World’s Data?,” in:
Nature, vol. 537, no. 7618, September 1,
2016, pp. 22–24.

Signal Codes and Machine Codes

 Franz Pichler

39

#GenealogyOfCode
#Binary
#Computing
#NumeralSystem

Codes:		
Mathematical	Objects	for	Transmitting	Messages	

	 Signal	codes

Signals enable communication between people via machines.
They make it possible to exchange messages, thereby conveying
information. Every signal has technical, material, and mathema-
tical abstract components. For example, each Morse signal that
is transmitted from a sender to a recipient is comprised of a series
of states of electrical energy that can also be expressed mathe -
 ma tically as the dots and dashes of the Morse alphabet. The Morse
code is the essential part of the exchange of messages. The
electrically generated signal executes and transmits the Morse
code via the technological apparatus available. Certain technical,
physical devices are necessary in order to generate signals and
to transmit, save, and receive them. The technical means used for
optical, acoustic, mechanical, magnetic, and electrical signals can
be generated by means of physics, optics, acoustics, mechanics,
magnetism, electricity, and electromagnetic waves. In principle, all
of these types of signals can be used to display one and the same
signal code.

The assignment of code symbols belonging to a signal is called
encoding. The transformation of one signal into another is known
as signal conversion. Analogue signals are those for which the
associated mathematical description requires the use of a system
of real numbers. Analogue signals are found predominantly in the
measurement of physical states. The signals that are generated
by musical instruments or by human voices are also examples of
analogue signals. Digital signals are those that can be expressed
mathematically through a system of whole numbers. Together
with their associated digital codes, digital signals currently make
the effective exchange of messages possible by means of micro -
electronics, computer technology, and information technology.
They also provide the basis for data to be processed by computers.

40
Si

gn
al

 C
od

es
 a

nd
 M

ac
hi

ne
 C

od
es

Fr

an
z

Pi
ch

le
r

Codes:		
Mathematical	Objects	to	Generate	Dynamic	Processes

	 Machine	codes

In everyday life and the workplace, we are constantly confronted
with dynamic processes. We designate processes as dynamic
that take on different states over the course of time. For example,
consider the dynamic process that takes place in connection with
the purchase of a ticket from a ticket machine. This begins with
the initial state; the ticket machine is directed toward an end state
in temporal succession through incremental signals that are sent
by clicking, which culminates in the issue of a ticket after payment
has been made. Another example of a dynamic process is the
weather forecast shown on television, in which the weather con-
ditions in geographic areas are shown in chronological order for
successive days of the week. The implementation of work plans,
in which the state of the work at given times is shown, can also be
considered an example of a dynamic process. We live in a world
in which we are surrounded by a multitude of dynamic processes.
Ultimately, one can even see oneself as a dynamic process – albeit
a highly complex one.

Generally speaking, every dynamic process is a conglomerate of
parts: material, energy, and information. Dynamic processes that
primarily relate to information, however, are the focus of the Open
Codes exhibition. This is a matter of dealing with the mathematical
foundations, the mathematical system that is essential for the
generation of dynamic processes. The machine codes are respon-
sible for this at the exhibition. Machine codes in this sense lead
us into the world of the mathematical analysis devised by Isaac
Newton and Gottfried Wilhelm Leibniz; the world of mechanics
from Leonhard Euler to Joseph-Louis de Lagrange and Pierre-
Simon Laplace; and also the world of automata, calculators, and
computers created in the modern era, plus the world of algorithms
created through programming. Charles Babbage, Alan Turing, Kurt
Gödel, Konrad Zuse, Howard Aiken, John von Neumann, Claude
E. Shannon, and Gustav Knuth are all significant here, to name
some important pioneers. Mathematically, the machine codes at
the exhibition have to do with areas such as differential equations,
difference equations, mathematical logic, Boolean algebra, finite
automata, cellular automata, Petri nets, and algorithms. For all of
these areas there are associated mathematical theories, which
can be used in dealing with dynamic processes and the associated
machine codes. The programming systems for social networks
such as Facebook, as well as operating systems for personal
computers (such as smartphones) and the application systems
for them (e.g. Google) are current practical examples of machine

41

codes. Because of the business models associated with them,
in many ways these represent counterexamples to the concept
of “open codes” in an information technology sense. They are,
however, addressed in the Open Codes exhibition.

Codes:		
Historical	Technical	Components	and	Writings

	 Building	blocks	for	“open	codes”

Besides its focus on art, science, and society, the Open Codes
exhibition also addresses the historical development of the tech-
nical components and systems necessary to generate, transmit,
and process codes. These are: mechanical or electrical counting
mechanisms; memory modules created by mechanical, magnetic,
or electronic technology; and combinatorial circuits ranging from
simple routers with plug contacts to the microelectronic gates
and microprocessors in use today. Because of the historical signif-
icance of Morse code, the exhibition devotes particular attention
to this system. With regard to the development of computers,
various forms and models of calculating machines are exhibited
in the exhibition. The technical and mathematical development
of codes and their use as signal codes or machine codes is pre-
sented through seminal texts, from Ramon Llull’s Ars Magna and
Friedrich von Knaus’s book on the miraculous writing automata
he constructed to the mathematical works of George Boole,
Claude E. Shannon, and John von Neumann.

 Franz Pichler

In the Open Codes exhibition around eighty objects from the Pichler Collection are on
show. Large parts of this collection were added to the ZKM | Collection in 2011.

Open Codes

 Works in the exhibition, A - Z

43

 A
Jean-Michel Alberola
*1953 in Saïda (DZ), lives and works
in Paris (FR)
 001 A Mathematical Sky – Henri

Poincaré
 2011, installation on the wall

and 2 mathematical models;
collection Fondation Cart-
ier pour l’art contemporain,
Paris; Mathematical Institute,
Ruprecht-Karls-Universität
Heidelberg; Karlsruhe Institute
of Technology Archive, Collec-
tion of Mathematical Models,
Karlsruhe; conceived in collab-
oration with Giancarlo Lucchini
with the support of the Institut
Henri Poincaré.

#GenealogyOfCode

Morehshin Allahyari
*1985 in Tehran (IR), lives and works
in Boston (US)
 002 Lamassu from the series Material

Speculation: ISIS, 2015
Ebu from the series Material
Speculation: ISIS, 2015
South Ivan Human Heads: Bearded
River God, 2017

 3-D printed plastic resin
and electronic components,
22.2 × 20.3 × 6.4 cm, edition
of 3; courtesy of Upfor Gallery,
Portland

#Encoding
 #Decoding #Escapism

AppSphere AG
founded in Ettlingen (DE), in 2010
 003 Digitale Transformation. Die

Kunst des modernen Arbeitslebens
 Presentation of ideas for modern

and forward-looking IT workplace
models; Microsoft Surface Hub,
Microsoft Studio, Microsoft
Surface Book, Microsoft Holo-
lens; with the kind support of
Microsoft.

#Labor&Production
 #Programming #Work4.0

 B
Lisa Bergmann
*1979 in Nuremberg (DE), lives and
works in Karlsruhe (DE)
 004 All We Know We Know from Light
 2017, HD video, color, sound,

45 min.
#Encoding
#VirtualReality
 #ComputerSimulatedEnvironments

Michael Bielicky,
Kamila B. Richter
*1954 in Prague (CZ), lives and works
in Karlsruhe and Düsseldorf (DE)
*1976 in Olomouc (CZ), lives and
works in Karlsruhe and Düsseldorf
(DE)
 005 Narzisstische Maschine
 2017, interactive installation,

camera, computer, software,
mosquito nets; software develop-
ment: Lukas Böhm, Lukas Feller;
sound: Lorenz Schwarz

#Encoding
 #QuantifiedSelf #Algorithm

Patrick Borgeat
*1985 in Öhringen (DE), lives and
works in Karlsruhe (DE)
 006 Notation. Prozess. Musik.
 2017, video presentation
#Encoding
 #ProgrammingSound #Interface

James Bridle
*1980 in London (GB), lives and works
in Athens (GR)
 007 Autonomous Trap 001
 2017, performance documentation,

Ditone archival pigment print,
150 × 200 cm; courtesy of NOME,
Berlin

#Labor&Production
 #Industry4.0 #SelfDrivingCars

#Automation

Ludger Brümmer (idea),
Benjamin Miller (programming,
interface design)
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)

44
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
A
-
C

*1986 in Paris (FR), lives and works
in Karlsruhe (DE)
 008 CellularAutomataExplorer
 2017, interactive sound instal-

lation, computer, monitor,
mouse; production of the
ZKM_Hertz-Lab

#Encoding
 #ProgrammingSound #Software

#Interface

Ludger Brümmer, Elizabeth Pich
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1989 Friedberg (DE), lives and works
in Karlsruhe (DE)
 009 CodeChain
 2017, interactive sound instal-

lation, app, tablet PC; produc-
tion of the ZKM_Hertz-Lab

#Encoding
 #ProgrammingSound #Software

#Interface

Ludger Brümmer, Dan Wilcox
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1981 in Orange (US), lives and works
in Karlsruhe (DE)
 010 LindemayerExplorer
 2017, interactive sound instal-

lation, computer, monitor,
mouse; production of the ZKM_
Hertz-Lab

#Encoding
 #ProgrammingSound #Software

#Interface

Ludger Brümmer (idea),
Benjamin Miller, Sami Chibane
(programming, interface design)
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1986 in Paris (FR), lives and works
in Karlsruhe (DE)
*1995 in Échirrolles (FR), lives and
studies in Grenoble (FR)
 011 MarkowKetten Explorer
 2017, interactive sound instal-

lation, computer, mouse, monitor
#Encoding
 #ProgrammingSound #Software

#Interface

Ludger Brümmer, Dan Wilcox
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1981 in Orange (US), lives and works
in Karlsruhe (DE)
 012 MusiCode
 2017, interactive sound installa

tion, computer, mouse, monitor;
production of the ZKM_Hertz-Lab

#Encoding
 #ProgrammingSound #Software

#Interface

Ludger Brümmer, Chandrasekhar
Ramakrishnan, Götz Dipper
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1975, lives and works in Zurich (CH)
*1966 in Stuttgart (DE), lives and
works in Karlsruhe (DE)
 013 Pattern Machine
 2004, interactive sound instal-

lation
#Encoding
 #ProgrammingSound #Software

#Interface

Ludger Brümmer, Chandrasekhar
Ramakrishnan, Götz Dipper
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1975, lives and works in Zurich (CH)
*1966 in Stuttgart (DE), lives and
works in Karlsruhe (DE)
 014 Random Machine
 2004, interactive sound instal-

lation
#Encoding
 #ProgrammingSound #Software

#Interface

Ludger Brümmer, Anton Himstedt
(idea), Chikashi Miyama, Alex
Rodrigues (programming)
*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1952 in Wiesbaden (DE), lives and
works Geisenheim (DE)
*1979 in Otsu (JP), lives and works
in Karlsruhe (DE)
*1993 in Covilhã (PT), lives and
works in Castelo Branco (PT)
 015 Rotating Scores
 2016, interactive sound instal-

lation

-

45

#Encoding
 #ProgrammingSound #Software

#Interface

Butternutten AG
Oliver-Selim Boualam, *1992 in
Stühlingen (DE), lives and works in
Karlsruhe (DE) and Marrakesh (MA);
Lukas Marstaller, *1993 in Aalen
(DE), lives and works in Karlsruhe
(DE) and Marrakesch (MA)
 016 PLAY
 2016, lacquered MDF, wood beams,

Plexiglas, table tennis net,
274 × 152 × 76 cm; the project
was created in collaboration
with Louis Kohlmann (Projektraum
LOTTE – Land of the Temporary
Eternity, Stuttgart)

#Encoding
 #Work4.0

Can Büyükberber, Yagmur Uyanik
*1987 in Izmir (TR), lives and works
in San Francisco (US)
*1992 in Antalya (TR), lives and
works in San Francisco (US)
 017 Morphogenesis
 2016, virtual reality installa-

tion, 3 prints, 91,5 × 114,3 cm
each

#VirtualReality
#Encoding
 #Escapism #ComputerSimulated

Environments #HMD

 C
Emma Charles
*1985 in London (GB), lives and works
in London
 018 White Mountain
 2016, 16 mm film transferred to

HD video, color, sound, 20 min.
#AlgorithmicGovernance
 #BigData

Matthieu Cherubini
*1984 in Aigle (CH), lives and works
in Shanghai (CN)
 019 Ethical Autonomous Vehicles
 2014, touchscreen, 3 prints,

42 × 59,4 cm each
#MachineLearning

 #ArtificialIntelligence
#AutonomousSystems
#SelfDrivingCars

Tyler Coburn
*1983 in New York (US), lives and
works in New York
 020 NaturallySpeaking
 2013–2014, mixed-media instal-

lation, text, screensaver,
monitors, furniture

#MachineLearning
 #PatternRecognition #Interface

Max Cooper, Andy Lomas
*1980 in Belfast (GB), lives and
works in London (GB)
*1967 in Welwyn Garden City (GB),
lives and works in London (GB)
 021 Chromos
 2017, HTC Vive, Unreal Engine

software
#VirtualReality
#GeneticCode
 #HMD #ComputerSimulated

Environments #DNA

Shane Cooper
*1964 in Yorba Linda (US), lives and
works in New Zealand (NZ)
 022 Remote Control
 1999, interactive network

installation
#AlgorithmicGovernance
 #Binary

Larry Cuba
*1950 in Atlanta (US), lives and
works in Santa Cruz (US)
 023 3/78 (Objects and Trans-

formations),
 1978, 16 mm film transferred to

HD video, b/w, 6 min.
 Two Space
 1979,16 mm film transferred to

HD video, b/w, 8 min.
 Calculated Movements
 1985, 16 mm film transferred to

HD video, b/w, 6 min.
#Encoding
 #Algorithm
 024 Animation Notebook 2010
 2010, generative animation,

video, 70 min.

46
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
C
-
G

 Animation Notebook 2012
 2012, generative animation,

video, 13 min.
#Encoding
 #Algorithm

#ComputerGeneratedDesign

 D
Frederik De Wilde
*1975 in Brussels (BE), lives and
works in Brussels
 025 Rzl-Dzl-AI
 2016, HD video, color, sound,

7:46 min.
#MachineLearning
#AlgorithmicGovernance
 #ArtificialIntelligence

#PatternRecognition #Drones

Simon Denny
*1982 in Auckland (NZ), lives and
works in Berlin (DE)
 026 Blockchain Future States
 2016, mixed-media installa-

tion, digital prints, HD video,
3 min.; courtesy of Galerie
Buchholz, Berlin / Cologne /
New York

#AlgorithmicGovernance
#AlgorithmicEconomy
 #Bitcoin #Cryptocurrencies

#Blockchain

Götz Dipper
*1966 in Stuttgart (DE), lives and
works in Karlsruhe (DE)
 027 Add_Synth
 2017, interactive sound instal-

lation, computer, software,
monitor, mouse, headphones;
production of the ZKM_Hertz-Lab

 028 algoRhythm Machine
 2017, interactive sound instal-

lation, computer, monitor,
mouse, headphones; production of
the ZKM_Hertz-Lab

 029 FM_Synth
 2017, computer, monitor, mouse,

headphones; production of the
ZKM_Hertz-Lab

 030 …wie der Computer Musik macht
 2017, interactive sound instal-

lation, computer, monitor,
mouse, headphones; idea: Peter
Weibel; consulting: Ludger

Brümmer, Benjamin Miller;
production of the ZKM_Hertz-Lab

#Encoding
 #ProgrammingSound #Software

#Interface

Harm van den Dorpel
*1981 in Zaandam (NL), lives and
works in Berlin (DE)
 031 Death Imitates Language
 2016/2017, website, two prints

(unique edition), 100 × 100 cm,
70 × 70 cm

#MachineLearning
#GeneticCode
#Encoding
 #PatternRecognition

#AutonomousSystems #Algorithm
#Software

Constant Dullaart
*1979 in Leiderdorp (NL), lives and
works in Amsterdam (NL)
 032 DullDream
 2015, neural network applica-

tion; courtesy of DullTechTM
#MachineLearning
 #PatternRecognition #Software

 E
Margret Eicher
*1955 in Viersen (DE), lives and
works in Berlin and Mannheim (DE)
 033 Das Große Rasenstück
 2013, tapestry, digital collage,

jacquard fabric, 275 × 425 cm
#Labor&Production
 #ComputerGeneratedDesign

#Programming

Jonas Eltes/Fabrica
*1993 in Kungsbacka (SE), lives and
works in Treviso (IT)
 034 Lost in Computation
 2017, mixed-media installation,

2 screens, 2 Raspberry Pis;
courtesy of Fabrica, Catena di
Villorba

#MachineLearning
#Encoding
 #PatternRecognition

#AutonomousSystems

47

César Escudero Andaluz, Martín
Nadal
*1983 in Ávila (ES), lives and works
in Linz (AT)
*1978 in Madrid (ES), lives and works
in Linz (AT)
 035 BitterCoin
 2016, installation, calculator
#AlgorithmicEconomy
 #Bitcoin #Cryptocurrencies

#Blockchain

Claire L. Evans
*1984 in Swindon (GB), lives and
works in Los Angeles (US)
 036 2001 100011
 2011, screenplay, 21,6 × 27,9 cm
#Encoding
 #Binary

 F
Harun Farocki
*1944 in Nový Jičín (CZ), †2014 in
Berlin (DE)
 037 Parallele
 2012–2014, 4 Videos
 Parallele I, 2012, 2-channel

video installation, color,
sound, 16 min.

 Parallele II, 2014, single
channel video installation,
color, sound, 9 min.

 Parallele III, 2014, 2-channel
video installation, color,
sound, 7 min.

 Parallele IV, 2014, single
channel video installation,
color, sound, 11 min.

 Harun Farocki GbR, Berlin
#VirtualReality
#Encoding
 #ComputerSimulatedEnvironments

Thierry Fournier
*1960 in Oullins (FR), lives and
works in Paris (FR)
 038 Oracles
 2017, UV prints on Plexiglas,

foam, LED lights, 210 × 65 × 15 cm
#MachineLearning
 #PatternRecognition

Fraunhofer IOSB and

ZKM | Karlsruhe
 039 Autonome Fahrzeuge
 2017, HD video, sound, color,

approx. 8 min.
#MachineLearning
#Labor&Production
 #AutonomousSystems #Drones

#Robots #Industry4.0
 040 Industrie 4.0
 2017, HD video, sound, color,

approx. 8 min.
#Labor&Production
#MachineLearning
#AlgorithmicGovernance
 #InternetOfThings

#Smart Factories #Automation
#Industry4.0

FZI Research Center for Infor-
mation Technology at the Karls-
ruhe Institute of Technology
(KIT)
founded in Karlsruhe (DE) in 1985
 041 The Human Brain Project
 2017, HD video, sound, color,

approx. 8 min.
#GeneticCode
#Encoding
 #Computing #Robots

 G
Kristof Gavrielides
*1973 in Cologne (DE), lives and
works in Stuttgart (DE) and Paris
(FR)
 042 Spatial Code Lab
 2017, mixed-media installation;

sponsors: ZKM | Center for Art
and Media Karlsruhe; Baden-
Württemberg Ministry of Science,
Research, and the Arts; BW-
Stipendium / Cité des Arts
Paris; msa / mediaspaceagency;
sam / studioadvancedmedia

#VirtualReality
#Labor&Production
#Encoding
 #Robots #Algorithm #Software

#Hardware #ComputerSimulated-
Environments #Automation

Melanie Gilligan
*1979 in Toronto (CA), lives and
works in New York (US) and London (GB)

48
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
G
-
L

 043 The Common Sense
 Phase 1, 5 Episodes
 2014/2015, 5-channel video

installation, site-specific
installation, 15 LED TVs,
powder-coated steel tubes,
wireless headphones, HD video,
color, sound, each 6–7 min.;
Julia Stoschek Foundation e.V.,
Düsseldorf

#AlgorithmicGovernance
 #Escapism #QuantifiedSelf

Fabien Giraud, Raphaël Siboni
*1980 in Caen (FR), lives and works
in Paris (FR)
*1981 in Romorantin-Lathenay (FR),
lives and works in Paris (FR)
 044 The Unmanned
 1997 – The Brute Force (2014)
 1759 – Mil Troi Cens Quarante

Huyt (2017)
 2-channel video installation,

HD, color, sound, video, loop,
26 min.; with the support of
Casino Luxembourg – Forum d’Art
Contemporain, Palais de Tokyo
and Le Fresnoy, Studio national
des arts contemporains.

#GenealogyOfCode

 H
Daniel Heiss
*1978 in Munich (DE), lives and works
in Karlsruhe (DE)
 045 KryptoLab
 2017, Bitcoin ASIC miner,

various computers
#AlgorithmicEconomy
#AlgorithmicGovernance
 #Bitcoin #Cryptocurrencies

#Blockchain
 046 S2T2T2M2L
 2017, computer, screens,

LED-strip
#MachineLearning
#Encoding
#MorseCode #Binary #Algorithm
#Software

Yannick Hofmann
*1988 in Offenbach a. M. (DE), lives
and works in Karlsruhe (DE)
 047 Monocause. Dialectics of the

Post-Truth Era
 2017, interactive sound instal-

lation, iOS app; illustration
and production assistant: Fiona
Marten

#Encoding
#AlgorithmicGovernance
 #Binary

 I
Simon Ingram
*1971 in Wellington (NZ), lives and
works in Auckland (NZ)
 048 Looking for the Waterhole
 2017, installation, painting

machine
#Labor&Production
 #Industry4.0 #Robots #Computing

ICD ITKE ITECH
Institute for Computational Design
and Construction and Institute of
Building Structures and Structural
Design with Integrative Technologies
and Architectural Design Research
Program at the University of
Stuttgart
 049 ICD/ITKE Research Pavilion
2016–17
 2016–2017, glass and carbon fiber

structure; ICD Institute for
Computational Design and Con-
struction (Prof. Achim Menges),
ITKE Institute of Building
Structures and Structural Design
(Prof. Jan Knippers), University
of Stuttgart

#MachineLearning
#Labor&Production
 #Industry4.0 #Pattern Recognition

#AutonomousSystems #Drones
#Robots #Automation

Institute of Theoretical
Informatics, DebateLab, KIT
Gregor Betz, *1976 in Peine (DE);
Michael Hamann, *1988 in Mühlacker
(DE); Tamara Mchedlidze, *1981 in
Tbilisi (GE); Sophie von Schmettow,
*1992 in Aachen (DE); Christian
Voigt, *1979 in Hamburg (DE);
the artists live and work in
Karlsruhe (DE)
 050 OpinionMap: What Should One Eat?

49

 2017, software; KIT, Institute
of Theoretical Informatics,
DebateLab

#Encoding
#AlgorithmicGovernance
 #BigData #Algorithm #Software

#Interface #QuantifiedSelf

 K
Eduardo Kac
*1965 in Rio de Janeiro (BR), lives
and works in Chicago (US)
 051 Transcription Jewels
 2001, objects, glass, purified

“Genesis” DNA, gold, wood
#GeneticCode
 #DNA #Phenotype #DNADataStorage

#Genotype

Helen Knowles
*1975 in London (GB), lives and works
in London and Manchester (GB)
 052 The Trial of Superdebthunterbot
 2016, installation, HD video,

color, sound, 45 min., birch
laminate ply and leatherette
jury bench, 5 drawings

#AlgorithmicGovernance
#MachineLearning
 #Algorithm #PatternRecognition

#BigData #ArtificialIntelligence

Beryl Korot
*1945 in New York (US), lives and
works in New York
 053 Babel 1
 1980, pigment on handwoven

linen, photographic repro-
duc tion, 77.7 × 58.9 × 6.4 cm;
courtesy of bitforms gallery,
New York

 Babel 2
 1980, pigment on handwoven

linen, photographic reproduc-
tion, 183 × 98.4 cm; courtesy
of bitforms gallery, New York

#Encoding
 #Decoding #Babel

Anton Kossjanenko
* in Kerch (SU), lives and works in
Karlsruhe (DE)
 054 Sacrophonie

 2017, interactive sound instal-
lation; programming: Alexandre
Rodrigues

#Encoding
 #ProgrammingSound #Interface

Brigitte Kowanz
*1957 in Vienna (AT), lives and works
in Vienna
 055 Morse Alphabet
 1998, light installation
#Encoding
 #Decoding #MorseCode

 L
Marc Lee
*1969 in Knutwil (CH), lives and
works in Eglisau (CH)
 056 The Show Must Go On.
 2017, ongoing, online news

channel
#AlgorithmicGovernance
 #BigData

Jan Robert Leegte
*1973 in Assen (NL), lives and works
in Amsterdam (NL)
 057 Portrait of a Web Server
 2013, JavaScript, HTML, CSS,

Apache HTTP Server source code
(written in C)

#Encoding
 #Software #SourceCode #Computing

Donna Legault
*in Ottawa (CA), lives and works in
Ottawa and Montreal (CA); the artist
is part of the international network
Hexagram. The collective is dedicated
to research-creation in the fields
of media arts, design, technology and
digital culture based in Montreal
(CA) and consists of over 80 members.
 058 Drone
 2017, 2-channel video instal-

lation, color, sound, loop,
5 min.; sponsors: Hexagram,
Milieux: Institute for Arts,
Culture and Technology

#Labor&Production
 #Industry4.0 #Drones #Automation

#Programming

50
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
L

Lawrence Lek
*1982 in Frankfurt a.M. (DE), lives
and works in London (GB)
 059 Sinofuturism (1839–2046 AD)
 2016, HD video essay, 60 min.
#MachineLearning
#GenealogyOfCode
 #ArtificialIntelligence

#Computing

Armin Linke
*1966 in Milan (IT), lives and works
in Berlin (DE)
 060 Phenotypes/Limited Forms
 2007, interactive installation,

photographs, RFID Tags, 16 RFID
readers, 2 touchscreens, 2 PCs,
2 BOCA micro-ticket printers,
thermal paper tickets, video
projector

#Encoding
 #Decoding #Phenotype #Interface

Bernd Lintermann, Torsten
Belschner, Mahsa Jenabi, Werner
A. König
*1967 in Düsseldorf (DE), lives and
works in Karlsruhe (DE)
*1966 in Freiburg i. B. (DE), lives
and works in Freiburg i. B.
*1982 in Teheran (IR)
*1978 Ravensburg (DE), lives and
works in Worms (DE)
 061 CloudBrowsing: Open Codes
 2009/2017, interactive instal-

lation for the PanoramaScreen;
overall concept, visual concept,
production management, realiza-
tion: Bernd Lintermann; audio
concept, realization: Torsten
Belschner; interaction design,
realization: Mahsa Jenabi,
Markus Nitsche, Werner A. König;
interface design: Matthias
Gommel; project management: Jan
Gerigk, Petra Kaiser; technical
realization: Manfred Hauffen,
Jan Gerigk, Nikolaus Völzow,
Arne Gräßer, Joachim Tesch;
production: ZKM | Institute for
Visual Media; in collaboration
with AG Mensch-Computer Inter-
aktion, University of Konstanz;
a project conducted within
the framework of the research
association “Information at your

fingertips – Interactive Visual-
ization for Gigapixel Displays”
funded by the Information Tech-
nology Funding Program of the
Federal State of Baden-Wuerttem-
berg (BW-FIT).

#GenealogyOfCode
 #Computing #Interface

Bernd Lintermann, Nikolaus
Völzow
*1967 in Düsseldorf (DE), lives and
works in Karlsruhe (DE)
*1980 in Koblenz (DE), lives and
works in Karlsruhe (DE)
 062 Three Phases of Digitalization
 2017, interactive installation

with polarized light and
augmented reality technology;
idea: Peter Weibel; concept:
Bernd Lintermann, Nikolaus
Völzow; software development:
Nikolaus Völzow; design:
Matthias Gommel; book design:
Jan Zappe; technical colla-
bo ra tion: Jan Gerigk, Manfred
Hauffen

#Encoding
#GenealogyOfCode
 #Interface #Software

Bernd Lintermann, Jan Gerigk
*1967 in Düsseldorf (DE), lives and
works in Karlsruhe (DE)
*1963 in Pforzheim (DE), lives and
works in Karlsruhe (DE)
 063 Site Map: Open Codes
 2017, interactive augmented

reality installation for iPad
and HoloLens; concept, project
management: Bernd Lintermann,
Jan Gerigk; application soft-
ware: Bernd Lintermann; pro-
duction management: Jan Gerigk;
technology: Manfred Hauffen;
production: ZKM | Institute for
Visual Media and ZKM | Media
Museum; based on the augmented
reality installation Traffic,
2011

#Encoding
 #Interface #AugmentedReality

Bernd Lintermann, Julia
Gerlach, Peter Weibel

51

*1967 in Düsseldorf (DE), lives and
works in Karlsruhe (DE)
*1967 in Hannover (DE), lives and
works in Frankfurt a.M. and Berlin (DE)
*1944 in Odessa (UA), lives and
works in Karlsruhe (DE)
 064 SoundARt IDEAMA
 2012, interactive augmented

reality installation, AR audio
database browser for iPad;
concept: Bernd Lintermann, Julia
Gerlach, Peter Weibel; curator:
Hartmut Jörg; software: Bernd
Lintermann; technical coordina-
tion: Manfred Hauffen; pro-
duction: ZKM | Institute for
Visual Media

#Encoding
 #ProgrammingSound #Interface

#AugmentedReality

Bernd Lintermann, Manfred
Hauffen, Peter Weibel
*1967 in Düsseldorf (DE), lives
and works in Karlsruhe (DE)
*1956 in Karlsruhe (DE), lives
and works in Karlsruhe
*1944 in Odessa (UA), lives and
works in Karlsruhe (DE)
 065 SynSeeThis
 2013, iOS app for iPad; idea,

conception, software: Bernd
Lintermann; performance: Peter
Weibel; technical support:
Manfred Hauffen; sound:
Manfred Hauffen, Hartmut
Bruckner; production: ZKM |
Institute for Visual Media

#Encoding
 #ProgrammingSound #Interface

Bernd Lintermann
*1967 in Düsseldorf (DE), lives
and works in Karlsruhe (DE)
 066 VRMe
 2017, interactive installation

for VR headset; production of
the ZKM_Hertz-Lab

#VirtualReality
 #Escapism #HMD

#Computer SimulatedEnvironments
#QuantifiedSelf #Work4.0

 067 YOU:R:CODE
 2017, interactive installation

with multi-channel projection;
idea: Peter Webel; concept,

realization: Bernd Lintermann;
audiodesign: Ludger Brümmer,
Yannick Hofmann; flip-dot
display: Christian Lölkes;
technological support: Manfred
Hauffen, Jan Gerigk; setup,
planning: Thomas Schwab; produc-
tion of the ZKM_Hertz-Lab

#Encoding
#GeneticCode
 #Decoding #Software #Hardware

#Interface #SourceCode
#QuantifiedSelf

Fei Liu
*1986 in Harbin (CN), lives and works
in New York (US)
 068 The Qualified Life
 2014, interactive installation;

in cooperation with Akademie
Schloss Solitude

#Labor&Production
 #Industry4.0 #SmartFactories

#BigData #QuantifiedSelf
#Interface #Work4.0

Christian Lölkes
*1990 in White Plains (US), lives and
studies in Karlsruhe (DE)
 069 Arecibo-Nachricht
 2017, installation
#GenealogyOfCode
#Encoding
 #Decoding
 070 Code Styles
 2017, installation
#Encoding
 #Software
 071 Codierte Informationen
 2017, installation
#Encoding
 #Decoding
 072 Game of Life
 2017, installation
#Encoding
#AlgorithmicGovernance
#GenealogyOfCode
 073 Sound of Sorting
 2017, installation
#Encoding
 #Algorithm

Solimán López
*1981 in Burgos (ES), lives and works
in Valencia (ES)

52
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
L
-
R

 074 Column 1-0
 2016–2017, video installation,

digital print on canvas, image
data, video projection, loop,
ca. 120 × 200 cm; assistance:
Toni Vaca

#Encoding
 #Interface #NumeralSystem

 M
Shawn Maximo
*1975 in Toronto (CA), lives and
works in New York (US)
 075 Open Doors
 2017, digital print
#Labor&Production
 #Work4.0 #Automation

#Programming #Algorithm
#Software

Rosa Menkman
*1983 in Arnhem (NL), lives and works
in Berlin (DE)
 076 DCT:SYPHONING.
The 1000000th (64th) Interval
 2017, virtual 3-D environment
#VirtualReality
#Encoding
 #Escapism #HMD #Computer-

SimulatedEnvironments #Binary

Chikashi Miyama
*1979 in Otsu (JP), lives and works
in Karlsruhe (DE)
 077 Rhythm of Shapes
 2016, interactive sound

installation
 078 Sonorama – Karlsruhe
 2017, sound installation,

ZKM_PanoramaLab
#Encoding
 #ProgrammingSound #Software

#Interface

Andreas Müller-Pohle
*1951 in Braunschweig (DE), lives
and works in Berlin (DE)
 079 Blind Genes
 2002, 2 digital lambda prints,

Cibachrome on aluminum under
acrylic glass, 11 × 100 × 5 cm,
45 × 100 × 5 cm; Bettina and
Thomas Hebell

#GeneticCode
#Encoding
 #DNA #SourceCode #Genotype
 080 Digital Scores I (after
Nicéphore Niépce)
 1995, 8 panels, Iris 3047

inkjet print on Aquarell
Arches grain Satiné 300 g/m2,
68,5 × 68,5 × 4 cm each

#GenealogyOfCode
 #ComputerGeneratedDesign

Jörn Müller-Quade
*1967 in Darmstadt (DE), lives and
works in Karlsruhe (DE)
 081 Code beautiful like a clock
 2017, monitor, software, sten-

cil; Kompetenzzentrum für ang-
ewandte Sicherheitstechnologie
(KASTEL) [Competence Center for
Applied Security Technology],
Karlsruhe Institute of Techn-
ology – KIT; scientific collabo-
ration: Jeremias Mechler

#GenealogyOfCode
#Encoding
 #Interface

 N
Greg Niemeyer
*1967 in Switzerland, lives and works
in Berkeley (US)
 082 Sonic Web Instrument
 2017, JavaScript code, touch-

screen, sound
#AlgorithmicGovernance
#Encoding
 #Algorithm #Software

#ProgrammingSound

Helena Nikonole
*1982 in Moscow (RU), lives and works
in Moscow
 083 deus X mchn
 2017, multimedia installation
#MachineLearning
#AlgorithmicGovernance
 #ArtificialIntelligence

#InternetOfThings

 P
Julian Palacz

53

*1983 in Leoben (AT), lives and works
in Vienna (AT)
 084 Fragmentierungen
 2015, glass engravings on hard

disks
#Encoding
 #Interface #Hardware

Matthew Plummer-Fernandez
*1982 in London (GB), lives and works
in London
 085 Vertigo in the Face of the
Infinite
 2017 ongoing, web application

and e-shop, 3-D printed plastic
figures, 3-D prints, tablets on
stands, monitors

#Encoding
 #Computing #Software #Interface

#BigData #ComputerGenerated-
Design

Julien Prévieux
*1974 in Grenoble (FR), lives and
works in Paris (FR)
 086 Patterns of Life
 2015, HD video, color, sound,

15:30 min.
#MachineLearning
#AlgorithmicGovernance
#Encoding
 #PatternRecognition

#QuantifiedSelf
 087 What Shall We Do Next?

(Sequence #2)
 2014, HD video, color, sound,

16:47 min.
#MachineLearning
#Encoding
 #PatternRecognition

 R
Peter Reichard, Manfred Kraft,
Michael Volkmer
*1969 in Mainz (DE), lives and works
in Wiesbaden (DE)
*1966 in Heidelberg (DE), lives and
works in Berlin (DE)
*1965 in Augsburg (DE), lives and
works in Wiesbaden (DE)
 088 NOxSTADT_LUFT_ANZEIGER
 2016–2017, outdoor: LED instal-

lation in an urban space;
indoor: interactive LED display;

 collaboration: Tom Kresin
#Encoding
 #Software #Binary

Matthias Richter,
Josef N. Patoprsty
*1986 in Bonn (DE), lives and works
in Karlsruhe (DE)
*1987 in Vienna (AT), lives and works
in Austin (US)
 089 Die Leidmaschine
 2017, PC, Arduino, software:

Python (OpenCV, DLib), Lua
(LÖVE)

#MachineLearning
#Encoding
 #ArtificialIntelligence #Pattern-

Recognition #AutonomousSystems
#Interface

Betty Rieckmann
*1986 in Palo Alto (US), lives and
works in Karlsruhe (DE)
 090 Silent Communications
 2017, site-specific installation,

LED lights, smart phone appli-
cation

#Encoding
#GenealogyOfCode
 #Decoding #Software #Interface

#MorseCode #Computing #Babel

robotlab
founded in 2000 by Matthias Gommel,
Martina Haitz, and Jan Zappe; working
in Karlsruhe (DE)
 091 manifest
 2008/2017, industrial robot,

writing desk, computer, soft-
ware, paper, pen; inspired by:
Peter Weibel

#MachineLearning #Industry4.0
 #ArtificialIntelligence #Robots

#Automation

Curtis Roth
*1986 in Portland (US), lives and
works in Columbus (US)
 092 Real Time
 2017, live-streamed video
#AlgorithmicGovernance
 #BigData #QuantifiedSelf

#Work4.0

54
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
R
-
S

RYBN.ORG
Artist collective, founded in 1999 in
Paris (FR), the artists live and work
in Paris
 093 ADM XI
 2017, multimedia installation;

Participants of the ADM XI
platform are: b01, Femke Herre-
graven, Brendan Howell, Martin
Howse, JoDi, Nicolas Montger-
mont, Horia Cosmin Samoila,
Antoine Schmitt, Marc Swyn-
ghedauw, Suzanne Treister. ADM
XI is part of the Antidatamining
series, launched in 2006. It is
the third and final part of RYBN.
ORG’s trilogy on algorithmic
finance, initiated with ADM 8
(2011) and continued with ADM X,
The Algorithmic Trading Freak-
show (2013). ADM XI is curated
by Inke Arns, and is coproduced
by Jeu de Paume (Paris), with
the support of DICRéAM, Labo-
media and Espace Multimedia
Gantner.

#AlgorithmicEconomy
#AlgorithmicGovernance
 #HighFrequencyTrading

 S
saai
Südwestdeutsches Archiv für Architek-
tur und Ingenieurbau, Karlsruhe
Institute of Technology
 094 Documents on Frei Otto’s Mann-
heim Multihalle
 1974–1975, plan: digital print;

books: digitized books; saai |
Südwestdeutsches Archiv für
Architektur und Ingenieurbau,
Karlsruhe

#Encoding
#GenealogyOfCode

Chris Salter
*1967 in Beaumont (US), lives and
works in Montreal (CA) and Berlin
(DE); the artist is part of the
international network Hexagram.
The collective is dedicated to
research-creation in the fields of
media arts, design, technology and
digital culture based in Montreal
(CA) and consists of over 80 members.

 095 N-Polytope: Behaviors in Light
and Sound After Iannis Xenakis
 2012/2017, steel cables,

microelectronics, LEDs, speak-
ers, software; in collaboration
with: Sofian Audry, Adam Basanta,
Marije Baalman, Elio Bidinost,
Thomas Spier

#MachineLearning
#Encoding
 #ArtificialIntelligence #Software

Karin Sander
*1957 in Bensberg (DE), lives and
works in Berlin (DE) and Zurich (CH)
 096 XML-SVG CODE / Source Code of
the Exhibition Space
 2010/2017, Oracal 638, plotter

foil matte, tricolor
#Encoding
 #SourceCode #Computing

Signal Codes and Machine Codes

 Zone 1: Morse telegraphy

 097 Morse key by Siemens & Halske,
Berlin, silent version

 1890; ZKM | Karlsruhe
#GenealogyOfCode
 #MorseCode
 098 Morse’s telegraph, German stan-

dard with paper tray by Siemens
& Halske, Berlin

 1870; ZKM | Karlsruhe
#GenealogyOfCode
 #MorseCode
 099 Franz Schmid, Die Teleg-

raphen-Alphabete und Zeichen
Österreichs in ihrer His-
torischen Entwicklung, Vienna

 1891; ZKM | Karlsruhe
#GenealogyOfCode
 #MorseCode
 100 Undersea cable receiver by

Lauritzen, “Great Northern
Tele graph Company,” Copenhagen,

 ca. 1890; ZKM | Karlsruhe
#GenealogyOfCode
 #MorseCode
 101 Morse “Knatterfunkensender” with

an induction coil by Firma Max
Kohl, Chemnitz; oscillator
spark gap after Heinrich Hertz
(self-made) and morse key;
ZKM | Karlsruhe

55

#GenealogyOfCode
 #MorseCode
 102 Morse coherer receiver with

reception bell (self-made with
historical elements); ZKM |
Karlsruhe

#GenealogyOfCode
 #MorseCode
 103 Morse color-inker and sounder,

demonstration model
 The model includes: Morse-Undu-

la tor by Siemens & Halske,
Berlin; Morse-Undulator by
Gebr. Naglo, Berlin; morse key;
switch; tapper-case with tapper;
Museum für Kommunikation,
Frankfurt am Main

#GenealogyOfCode
 #MorseCode

Zone 2: Signal codes
1. Exhibits on Boolean Algebra

 104 Erich Hochstetter, Herrn von
Leibniz’ Rechnung mit Null
und Eins, Siemens-Aktienge-
sellschaft, Berlin

 1966; courtesy of Peter Weibel
#GenealogyOfCode
 #NumeralSystem #Computing

#Binary
 105 George Boole, The Mathematical

Analysis of Logic, Basil
Blackwell, Oxford

 1969 (Reprint); courtesy of
Franz Pichler

#GenealogyOfCode
 #NumeralSystem #Computing

#Binary
 106 Claude E. Shannon, “The Synthe-

sis of Two-Terminal Switching
Circuits,” in: The Bell
System Technical Journal, 28,1,
pp. 59–98

 January 1949; courtesy of Franz
Pichler

#GenealogyOfCode
 #NumeralSystem #Computing

#Binary
 107 Rudolf Mosse-Code Book, Rudolf

Mosse Publishing House, Berlin
 no year; courtesy of Franz

Pichler
#GenealogyOfCode
 #MorseCode

 2. Memory modules

 108 Punch cards from the IT Center
of the University of Linz for
a Philips office computer and
punch cards from the library of
the IBM Laboratory in Vienna;
courtesy of Franz Pichler

#GenealogyOfCode
 #Computing #Software
 109 Impulse repeater, long-distance

telephone technology by Siemens
& Halske, Berlin

 1951; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 110 Matrix with ferrite storage

rings
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 111 Core memory block from the

computer IBM 705, USA
 1955; ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 112 Core memory – circuit board

by the Nixdorf Computer AG,
Paderborn

 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 113 Magnetic tape, multi-system

tape by IBM; courtesy of Franz
Pichler

#GenealogyOfCode
 #Computing #Hardware
 114 Magnetic disc station
 1970s; ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 115 PC hard drive; courtesy of

Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 116 Laptop disk drive by Toshiba,

80 GB; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 117 Tube flip-flop, IBM 650
 ca. 1958; courtesy of Franz

Pichler
#GenealogyOfCode
 #Computing #Hardware
 118 Tube flip-flop, ZUSE Z22
 ca. 1958; courtesy of Franz

Pichler
#GenealogyOfCode
 #Computing #Hardware
 119 Optical memory disc, compact

56
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
S

disc (CD)
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 120 Microelectronic semiconductor

memory, USB drive
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware

3. Switching modules

 121 Rotary relay from the telephone
dialing technology

 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 122 Strowger router with relay

switching unit by Mix & Genest,
Stuttgart

 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 123 Crossbar switch for telegraphy

by Western Electric Inc., USA
 ZKM | Karlsruhe
#GenealogyOfCode
 #MorseCode
 124 Miniature crossbar switch, tele-

phone extension technology, ITT
Corporation; courtesy of Franz
Pichler

#GenealogyOfCode
 #Computing #Hardware
 125 ESK coupling section by Siemens
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware

4. Coding components

 126 Relay switching unit for a
telephone dialing exchange

 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 127 Relay circuit board, electro—

magnetic combinatorial circuit
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 128 Circuit board with microelec-

tronic elements
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware

 Zone 3: ENIGMA and pointer
telegraphs

 129 ENIGMA K cipher machine made
for the Swiss Army

 ca. 1939; Karlsruhe Institute
of Technology, Competence Center
for Applied Security Technology
(KASTEL)

#GenealogyOfCode
 #Babel
 130 Johannes Trithemius,

Polygraphia, Frankfurt
 1550; ZKM | Karlsruhe
#GenealogyOfCode
 131 Giambattista della Porta, De

Furtivis Literarum Notis, Naples
 1563; ZKM | Karlsruhe
#GenealogyOfCode
 132 Claude E. Shannon, “Communica-

tion Theory of Secrecy Systems,”
in: The Bell System Technical
Journal, 28,4, pp. 656–715

 October 1949; ZKM | Karlsruhe
#GenealogyOfCode
 #Computing
 133 Transmitter for the dial tele-

graph
 ZKM | Karlsruhe
#GenealogyOfCode
 #MorseCode
 134 Receiver for the dial telegraph

of Breguet, Paris ca 1855;
 ZKM | Karlsruhe
#GenealogyOfCode
 #MorseCode

 Zone 4: Mechanical automate,
androids, and logical machines

 135 P. Gaspare Schotto, Magiae
Universalis. Naturae et Artis,
Pars II Acustica, Bambergae,
MDCLXXIV, 1674; courtesy of
Franz Pichler

#GenealogyOfCode
 136 Friedrich von Knauß, Selbstsch-

reibende Wundermaschinen, Vienna
 1780; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 137 Siegfried Richter, Wunderbares

Menschenwerk, Edition Leipzig
 1989; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 138 Alfred Chapuis, Edmond-Droz,

Mechanical Puppets, Neuchatel

57

 1956; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 139 M. Raymundus Lullus, Ars Magna,

generalis et ultima Francofurti
MDXCVI

 1596; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 140 Alexander Fidora, Carles Sierra

(eds.), Ramon Lull, From the Ars
Magna to Artificial Intelligence,
Barcelona

 2011; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing

 Zone 5: Counters and mechanical
computers

 1. Counters

 141 Mechanical decadic counter
 Courtesy of Franz Pichler
#GenealogyOfCode
 #NumeralSystem #Computing

#Hardware
 142 Magnetic counter 53 by Standard

Elektrik Lorenz AG, Stuttgart
 1953; ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 143 Mechanical gear with electromag-

netic counter, probably from an
office machine; courtesy of Franz
Pichler

#GenealogyOfCode
 #Computing #Hardware
 144 Electromagnetic counter module;
 courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 145 Electronic counting element

with Philips counting tube E1T
by VEB Vokutronik Dresden;

 courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware

 2. Mechanical computers

 146 Cylindrical slide ruler by
Albert Nestler AG, Lahr

 1.6 m; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 147 Rolling ball planimeter by

Coradi Company, Zurich

 ca. 1910; ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 148 Air Data Computer, electro-

magnetic analog computer, US
Airforce

 ca. 1965; ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 149 Mechanic counting machine

“Comptometer” by Felt & Tarrant,
Chicago

 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 150 Mechanic leverage counter,

“Consul the Educated Monkey”
knows the multiplication table;

 courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 151 Mechanical calculator by

Mercedes-Euklid; courtesy of
Franz Pichler

#GenealogyOfCode
 #Computing #Hardware
 152 Mechanical calculator CURTA II

by Contina Ltd., Mauren, Liech-
tenstein

 1948; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware

 Zone 6: Historical exhibits
relating to machine codes,
automata, and programming

 153 C. E. Shannon, J. McCarthy
(eds.), Automata Studies,
Princeton University Press,
Princeton (NJ)

 1956; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 154 Carl Adam Petri, Kommunikation

mit Automaten, PhD thesis,
Rheinisch-Westfälisches Institut
für Instrumentelle Mathematik
an der Universität Bonn

 1962; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 155 John von Neumann, Theory of

Selfreproducing Automata,
University of Illinois Press,
Urbana (IL)

 1966; courtesy of Franz Pichler
#GenealogyOfCode

58
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
S

 #Computing
 156 Stephen Wolfram, Theory

and Applications of Cellular
Automata, World Scientific
Publishing Co., Singapur

 1986; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 157 Konrad Zuse, Rechnender Raum,

Springer Fachmedien Wiesbaden
GmbH

 1969 (Reprint); ZKM | Karlsruhe
#GenealogyOfCode
 #Computing
 158 Benoît Mandelbrot, The Fractal

Geometry of Nature, W.H. Freeman
and Company, New York (NY)

 1977; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 159 Konrad Zuse, The Plankalkül,

Gesellschaft für Mathematik
und Datenverarbeitung Bonn,
St. Augustin-Birlinghoven

 1976; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 160 E.W. Dijkstra, A Primer of ALGOL

60 Programming, Academic Press,
London

 1962; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 161 Heinz Rutishauser, Description

of ALGOL 60, Springer-Verlag
Heidelberg

 1967; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Babel
 162 Heinz Zemanek et al., Extension

of the Algorithmic Language
ALGOL, Mailüfterl – Vienna,
Final Report

 July 31, 1961; courtesy of Franz
Pichler

#GenealogyOfCode
 #Computing
 163 P. Lucas, Introduction to the

Method used for the formal
Definition of PL/1, Technical
Report, IBM Laboratory Vienna

 1967; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing

 Zone 7: Microelectronics and
digitization

 1. Semiconductor devices

 164 The development from relays up
to the integrated circuit by
Nixdorf Computer AG, Paderborn

 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 165 Pure silicium showpiece by

Wacker Chemie AG, Burghausen
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 166 Silicon wafer with processor

chips by Siemens Research ZTE,
Munich

 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 167 Analog-to-digital converter

in microchip technology manu-
factured by Siemens Munich as
„Munich Frauenkirche“ on the
occasion of the IFIP Congress
1989

 1989; plexiglass with magnifying
lens; courtesy of Franz Pichler

#GenealogyOfCode
 #Computing #Hardware
 168 Microprocessor Z80 (3 pieces) by

Zilog, USA
 1975; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 169 Cutaway model of a processor

chip
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware
 170 Circuit board of a microproces-

sor by Texas Instruments, USA;
 courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 171 Circuit board of an IBM computer

with IBM14 and IBM52 chip;
 courtesy of Franz Pichler
#GenealogyOfCode
 #Computing #Hardware
 172 Single chip computer, “Supercom-

puter” by n-Cube Company, USA
 ZKM | Karlsruhe
#GenealogyOfCode
 #Computing #Hardware

 2. Exhibits on microelectronics

 173 Carver Mead, Lynn Conway, Intro-

59

duction to VLSI Design, Addi-
son-Wesley Publishing Company

 1980; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 174 E. Hörbst, C. Müller-Schloer,

H. Schwärtzel, Design of VLSI
Circuits, Springer-Verlag,
Heidelberg

 1986; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing
 175 Franz Pichler, Historische

Meilensteine der Mikroelek-
tronik, Trauner Verlag Linz

 2012; courtesy of Franz Pichler
#GenealogyOfCode
 #Computing

Karl Sims
*1962 in Boston (US), lives and works
in the US
 176 Evolved Virtual Creatures
 1994, computer animation, video,

5 min.
#GeneticCode
 #DNA #ComputerGeneratedDesign

Adam Słowik, Christian
Lölkes (Software development),
Peter Weibel
*1980 Skierniewice (PL), lives and
works in Berlin (DE)
*1990 in White Plains (US), lives and
studies in Karlsruhe (DE)
* 1944 in Odessa (UA), lives and
works in Karlsruhe (DE)
 177 Alphabet-Space
 2017, mixed-media installation
#Encoding
#GenealogyOfCode
 #ComputerGeneratedDesign

#Software #Hardware #Interface

Rasa Smite, Raitis Smits
*1969 in Riga (LV), lives and works
in Riga
*1966 in Riga (LV), lives and works
in Riga
 178 Biotricity. Fluctuations of

Micro-Worlds
 2014, bacteria battery (2 MFC

cells), real-time sonification
and visualization of bioenergy,
video; the artwork was created

with the support of the State
Cultural Capital Foundation
of Latvia and the Solid State
Physics Institute of Latvian
University. The sonification was
made in collaboration with the
artist Voldemārs Johansons.

#Encoding
 #Bioengineering

Space Caviar
Simone C. Niquille, *1987 in Zug
(CH), lives and works in Amsterdam
(NL); Joseph Grima, *1977, lives
and works in Genoa (IT)
 179 Fortress of Solitude
 2014, HD video, color, sound,

20:25 min.; comissioned by the
Biennale Interieur Foundation;
soundtrack by M.E.S.H.

#MachineLearning
#AlgorithmicGovernance
 #ArtificialIntelligence

#PatternRecognition
#AutonomousSystems
#InternetOfThings #Automation
#Industry4.0

Barry Stone
*1971 in Lubbock (US), lives and
works in Austin (US)
 DAILY, IN A NIMBLE SEA
 2016; courtesy of Klaus von

Nichtssagend Gallery, New York
 180 20150714-DSCF9064_3.tif Bai-

ley Island, Maine (soft sun),
20150714-DSCF9064_3.txt Bailey
Island, Maine (soft sun)

 2016, 2 archival inkjet prints
on Polar Matte inkjet paper,
101 × 150.5 cm

 181 20150714-DSCF9296_3.tif,
Bailey Island, Maine (seascape),
20150714-DSCF9296_3.txt,
Bailey Island, Maine (seascape)

 2016, 2 archival inkjet prints
on Polar Matte inkjet paper,
101 × 67 cm

 182 20150714-DSCF9297_4.tif,
Bailey Island, Maine (seascape),
20150714-DSCF9297_4.txt,
Bailey Island, Maine (seascape)

 2016, 2 archival inkjet prints
on Polar Matte inkjet paper,
101 × 67 cm

#Encoding

60
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
S
-
W

 #NumeralSystem

Monica Studer, Christoph van
den Berg
*1960 in Zurich (CH), lives and works
in Basel (CH)
*1962 in Basel (CH), lives and works
in Basel
 183 Dark Matter – One Million Years

Later
 2016–2017, computer generated

animation, loop, 10 min.
#Encoding
 #Algorithm

#Computer Generated Design
 184 Passage Park #7: relocate
 2017, interactive real-time

animation, projection, interface
#Encoding
 #Algorithm #ComputerSimulated

Environments #Interface

 T
The Critical Engineering
Working Group
Julian Oliver, *1974 in New Zealand,
lives and works in Berlin (DE)
Gordan Savičić, *1980 in Vienna (AT),
lives and works in Lausanne (CH)
Daniil Vasiliev, *1978 in Russia,
lives and works in Berlin (DE)
 185 The Critical Engineering

Manifesto
 2011, print, 84.1 × 118.9 cm
#AlgorithmicGovernance
 #Computing

Jol Thomson
*1981 in Toronto (CA), lives and
works in Berlin (DE) and London (GB)
 186 Deep Time Machine Learning
 2017, 3-channel projection,

color, sound, 12 min.; this
video was produced as part of
the WimmelResearch-Fellowship
at Platform 12, a joint project
of Akademie Schloss Solitude,
Robert Bosch GmbH, and Wimmel-
forschung. With additional
support from: Stuttgart State
Museum of Natural History
Freundeskreis Philipp Matthäus
Hahn Kornwestheim e.V.

#MachineLearning

#GenealogyOfCode
 #ArtificialIntelligence

#PatternRecognition
#AutonomousSystems

Suzanne Treister
*1958 in London (GB), lives and works
in London
 187 Hexen 2.0 / Macy Conferences

Attendees
 2009–2011, archival giclée

prints; courtesy of Anny Juda
Fine Art, London

#GenealogyOfCode
 #Cybernetics

 U
UBERMORGEN.COM
founded in 1995, active in Vienna
(AT) and St. Moritz (CH)
 188 Chinese Coin (Red Blood)
 2015, mixed-media installation,

full HD video with Dolby
Surround 5.1, red bench; video
and sound: Mike Huntermann

#AlgorithmicEconomy
#AlgorithmicGovernance
 #Bitcoin #Cryptocurrencies

 V
Ruben van de Ven
*1989 in Lelystad (NL), lives and
works in Rotterdam (NL)
 189 Emotion Hero
 2016, android app, server soft-

ware, browser-based projection
#MachineLearning
 #PatternRecognition

Koen Vanmechelen
*1965 in Sint-Truiden (BE), lives and
works in Genk (BE)
 190 Book of Genome – PCC
 2016, 3 leather bound books of

comparative DNA sequence analy-
ses, 8 × 35 × 31 cm each

 191 DECODE – PCC
 2016, video, color, sound,

60 min.
#GeneticCode
 #DNA #Genotype

61

Ivar Veermäe
*1982 in Tallinn (EE), lives and
works in Berlin (DE)
 192 Center of Doubt
 2012–2015, arts-based research

project, 3-channel video
installation including:

 Crystal Computing (Google
Inc., St. Ghislain), HD video,
9:20 min.

 Patent Application Data,
HD video, 8:06 min.

 The Formation of Clouds,
HD video, 7:24 min.

#AlgorithmicGovernance
 #BigData #Hardware

::vtol::
*1986 in Moscow (RU), lives and works
in Moscow
 193 IVY
 2017, step sequencer
#Encoding
 #ProgrammingSound

 W
Clemens Wallrath, Felix Held
*1992 in Karlsruhe (DE), lives and
studies in Karlsruhe
*1990 in Rinteln (DE), lives and
works in Karlsruhe (DE)
 194 keine zahl ist illegal
 2017, installation, 40 × 40 RGB

LED matrix panel
#Encoding
 #Computing #Interface #Decrypt

Clemens von Wedemeyer
*1974 in Göttingen (DE), lives and
works in Leipzig (DE)
 195 ESIOD 2015
 2016, HD video, color, sound,

39 min.; courtesy of KOW,
Berlin

#AlgorithmicGovernance
#AlgorithmicEconomy
 #BigData #QuantifiedSelf

Peter Weibel (idea) Ludger
Brümmer (computer animation), Götz
Dipper (interactive environment)
*1944 in Odessa (UA), lives and works
in Karlsruhe (DE)

*1958 in Werne (DE), lives and works
in Karlsruhe (DE)
*1966 in Stuttgart (DE), lives and
works in Karlsruhe (DE)
Production: ZKM | Karlsruhe
 196 Monochord
 2012, interactive audiovisual

installation for computer and
screen; sponsor: Genesis,
physical Modeling Environment:
ACROE, Grenoble

#Encoding
 #ProgrammingSound #Software

#Interface

Alex Wenger, Max-Gerd Retzlaff
*1975 in the Canton of Zug (CH),
lives and works in Ettlingen (DE)
*1981 in Warendorf (DE), lives and
works in Karlsruhe (DE)
 197 Daten|Spuren
 2015, multimedia installation
#AlgorithmicGovernance
 #BigData #QuantifiedSelf #Decrypt

#Programming

Where Dogs Run
founded in 2000 in Yekaterinburg (RU)
Alexey Korzukhin, *1973 in Sverdlovsk
(RU); Olga Inozemtseva, *1977 in
Jalutorovsk (RU); Natalia Grekhova,
*1976 in Kamensk-Uralsky (RU);
Vladislav Bulatov, *1974 in
Sverdlovsk (RU); living and working
in Yekaterinburg (RU)
 198 Symbolism in Circuit Diagrams
 Since 2006 ongoing, mixed-media

installation
#Encoding
 #Decoding #Software

#Hardware #Interface
#ComputerSimulated Environments

Wibu-Systems AG and FZI
Research Center for Information
Technology, Karlsruhe Institute
of Technology (KIT)
 199 Blurry Box®
 2014, USB dongle, software; at

the exhibition from October 20,
2017 to March 25, 2018

#Encoding
 #Decrypt #Software

62
Wo

rk
s

in
 t

he
 e

xh
ib

it
io

n
W
-
Z

Stephen Willats
*1943 in London (GB), lives and works
in London
 200 A State of Agreement
 1975, 4 panels, gouache, photo-

graphic prints, Letraset on
card, ink; courtesy of Victoria
Miro Gallery, London

 201 Meta Filter
 1973–1975, HD film, color, sound,

6 min., digital prints
 202 Six Levels of Interpersonal

Organisation
 1974, photographic prints,

gouache, ink, Letraset on card
#GenealogyOfCode
#AlgorithmicGovernance
 #Cybernetics #Computing

Manfred Wolff-Plottegg,
Wolfgang Maass
*1946 in Schöder (AT), lives and
works in Graz and Vienna (AT)
*1949 in Frankfurt a. M. (DE), lives
and works in Graz (AT)
 203 Neuronaler Architektur Generator
 1999, computer installation,

2 PCs (CPU 686), 2 projections
#MachineLearning
#Encoding
 #ComputerSimulatedEnvironments

World-Information Institute
founded in 1999, active in Vienna (AT)
 204 Painted by Numbers
 2016, 6-channel video installa-

tion
#AlgorithmicGovernance
#AlgorithmicEconomy
 #BigData #Algorithm #Software

Cerith Wyn Evans
*1958 in Llanelli (GB), lives and
works in London (GB)
 205 “Astrophotography – Stages of

Photographic Development” by
Siegfried Marx (1987)

 2007, chandelier (Luce Italia),
bulbs, flat screen monitor,
computer with Morse code unit;
Thyssen-Bornemissza Art Contem-
porary Collection, Vienna

#GenealogyOfCode
#Encoding
 #Decoding #MorseCode

 Z
Julia Zamboni
*1985 in Brasilia (BR), lives and
works in Montreal (CA); the artist
is part of the international network
Hexagram. The collective is dedicated
to research-creation in the fields
of media arts, design, technology
and digital culture based in Montreal
(CA) and consists of over 80 members.
 206 Robot Ludens
 2017, installation, 2 touch-

screens, spider-like robots;
sponsors: Hexagram and TAG
(Technoculture, Art, and Games)

#Labor&Production
 #Industry4.0 #Robots #Automation

#Programming

ZKM | Karlsruhe
 207 Genealogy of the Digital Code
 2017, Installation
 Linear Navigator (1999):

Jeffrey Shaw
 idea: Peter Weibel; conception,

realization: ZKM | Institute for
Visual Media; project manage-
ment: Bernd Lintermann; editors:
Lívia Nolasco-Rózsás, Magdalena
Stöger, Olga Timurgalieva; soft-
ware: Bernd Lintermann, Nikolaus
Völzow; video post-production
and graphics: Moritz Büchner,
Frenz Jordt, Christina Zartmann;
construction: Nelissen Dekorbouw

#GenealogyOfCode
#Encoding
 #Computing #Algorithm #Software

#Hardware

October 20, 2017 – August 5, 2018
Open Codes. Living in Digital Worlds

 Exhibition

Concept: Peter Weibel
Curators: Peter Weibel with

Lívia Nolasco-Rózsás,
Yasemin Keskintepe, and
Blanca Giménez

Scientific	advisor: Christian Lölkes
External	advisors: Natalia Fuchs,

Franz Pichler
Project	assistance: Magdalena Stöger,

Olga Timurgalieva, Amit Shemma,
Hannah-Maria Winters

Curatorial	assistant,	Hexagram	
projects: Garrett Lockhard

Head	of	curatorial	department:
Philipp Ziegler

Head	of	technical	museum	and		
exhibition	services:
Martin Mangold

Szenography	and	interior	design:
Peter Weibel, Vitra GmbH,
feco-feederle GmbH

Technical	project	management:
Thomas Schwab with
Andrea Hartinger

Construction	team: Andrea Hartinger,
Volker Becker, Claudius Böhm,
Mirco Fraß, Rainer Gabler,
Gregor Gaissmaier, Ronny Haas,
Dirk Heesakker, Daniel Heiss,
Christof Hierholzer, Werner
Hutzenlaub, Gisbert Laaber,
Christian Nainggolan, Marius
Nestler, Marco Preitschopf,
Martin Schläfke, Marc Schütze

External	companies: Artinate,
Essential Art Solutions, Artbeats

Concept	exhibition	graphic	design:
Peter Weibel, Christian Lölkes

Conservation	team: Nahid Matin Pour,
Sophie Bunz, Ursula Ganß

Logistics,	registrar: Natascha Daher
Directorial	department: Anett Holzheid,

Tobias Klingenmayer, Adrian Koop
ZKM_Hertz-Lab: Institute for Visual

Media: Bernd Lintermann,
JanGerigk, Manfred Hauffen,
Volker Nowicki; Institute for Music
and Acoustics: Ludger Brümmer,
Yannick Hofmann, Elisabeth Pich,
Ben Miller, Götz Dipper, Dan Wilcox,
Bernhard Sturm, Dorte Becker,
Chikashi Miyama, Sami Chibane

Public	relations	and	marketing:
Dominika Szope, Regina Hock,
Alexa Knapp, Stefanie Strigl,
Sophia Wulle, Marie Schmidt

Video	studio: Christina Zartmann,
Moritz Büchner, Frenz Jordt,
Martina Rotzal

Museum	communication: Janine Burger,
Banu Beyer, Sabine Faller,
Regine Frisch, Edgar Guttmann,
Barbara Zoé Kiolbassa, Fanny Kranz

Event	management: Viola Gaiser,
Wolfgang Knapp, Desiree Weiler,
Hartmut Bruckner, Manuel Weber,
Manuel Becker, Hans Gass,
Andre Gemmrich, Niklas Wallbaum

Office	managers: Ingrid Truxa,
Anna Maganuco, Caroline Mössner,
Sabine Krause, Alexandra Kempf,
Elke Cordell, Silke Sutter,
Dominique Theise

Library: Petra Zimmermann,
Christiane Minter, Regina
Strasser-Gnädig, Alena Dauth

Wissen	(Collection,	Archives	&	
Research):	Margit Rosen,
Andreas Brehmer, Claudia Gehrig,
Hartmut Jörg, Felix Mittelberger,
Dorcas Müller, Stephanie Tiede

IT	support: Uwe Faber, Elena Lorenz,
Joachim Schütze, Volker
Sommerfeld, Christian Lölkes

Shop	and	info	desk: Petra Koger,
Daniela Doermann, Tatjana
Draskovic, Laurine Haller,
Ines Karabuz, Rana Karan,
Susen Schorpp, Jutta Schuhmann,
Marina Siggelkow

The	ZKM	|	Karlsruhe	thanks
the artists, lenders, and cooperation
partners of the exhibition.
Special thanks to: Corona Feederle,
Marc Frohn, Eva Hambsch,
Matthias Hoffmann, Jochen Specht,
and Gerd Wetzel.

	 Booklet

Editor: Peter Weibel
Editorial	staff: ZKM | Publications

(Jens Lutz, Ulrike Havemann,
Anna Straetmans, Miriam Stürner,
Claudia Voigtländer)

Authors: Blanca Giménez,
Yasemin Keskintepe, Lívia Nolasco-
Rózsás, Franz Pichler, Peter Weibel

Copy	editing: ZKM | Publications (D),
Gloria Custance (E)

Translations: Petra Kaiser (D);
Gloria Custance, Isaac Custance,
Jane Yager (E)

Cover	design: Peter Weibel,
Christian Lölkes

Typeface:	Univers, Inconsolata
Paper:	Amber Graphic, Cover: 150 g/m2,

Inhalt: 80 g/m2

Printed	by: Stober GmbH, Eggenstein

Special	thanks	to: Tanja Schüz,
Anett Holzheid, Gloria Custance,
Martina Hofmann

© 2017 ZKM | Center for Art and Media
Karlsruhe

© of the texts: the authors
Unless otherwise noted, the artworks are

in the possession of the artists.

ZKM | Zentrum für Kunst und Medien
Karlsruhe

Lorenzstraße 19, 76135 Karlsruhe
Germany
info@zkm.de
www.zkm.de

CEO	and	Chairman	ZKM: Peter Weibel
COO	ZKM: Christiane Riedel
Head	of	Administration	ZKM:

Boris Kirchner

IN COOPERATION WITH

WITH KIND SUPPORT OF: WERNER STOBER STIFTUNG, FAM. WÜRTH, FAM. LEIBINGER

FOUNDERS OF ZKM

CULINARY PARTNERS: BÜHLER CATERING ETTLINGEN, RITTER SPORT, LASERZENTRUM LINDAU,
FOODLOOSE GMBH & CO. KG, SÜDKOLA LIMONADENWERK, BRATZLER & CO. GMBH,
LIFEBRANDS NATURAL FOOD GMBH, BARNHOUSE NATURPRODUKTE GMBH, OBST VOM BODENSEE
VERTRIEBSGESELLSCHAFT MBH, SEEZÜNGLE

PARTNERS OF ZKM

SUPPORTED BY

