Breadcrumbs

Design - Head - Display
default
Design - Head - Layout
flex-row-6-6
Design - Head - Color
default
Sub-Menu - Display - Design
default

Sarah Friend

Perverse Affordances

© Sarah Friend
Admin Title
D7 Paragraph: r17_text / GPC_ID: 7121
Layout
flex-row-9-3 reverse

Year
2018 (ongoing)

Medium / Material / Technic
Video

Admin Title
D7 Paragraph: r17_text / GPC_ID: 7122
Layout
flex-row-9-3 reverse

»Perverse Affordances« examines the political implications of human-computer interaction. Sarah Friend wrote an algorithm that crawled the ten most popular social media platforms worldwide and randomly took screenshots. She then used the prepared dataset of over 10,000 screen captures to train a generative adversarial neural network to produce new screenshots of possible interfaces. The resulting images speculate how the machine learning tools of big social media companies »see« their users all the time.

The title of the work refers to the term »perverse incentive«, which, coming from systems design, means emergent behavior within a system that contradicts the intentions of its designers. »Affordances«, stemming from human-machine interaction studies, means the possibilities for action that an interface offers its user. A perverse affordance might thus be something enabled by an interface but not intended by its designers.

Surveilling thousands of personal pages all over the world, Friend emphasizes that design is never innocent. Contemporary citizens face hundreds of interfaces which, facilitating our activities in data-permeated urban habitats, also frame the set of possibilities for how they might be used by various parties.

Footer

ZKM | Center for Art and Media

Lorenzstraße 19
76135 Karlsruhe

+49 (0) 721 - 8100 - 1200
info@zkm.de

Organization

Dialog